扫码登录小狗阅读
MicroRNA-22 exerts its neuroprotective and angiogenic functions via regulating PI3K/Akt signaling pathway in cerebral ischemia–reperfusion rats
MicroRNA-22 通过调节 PI3K/Akt 信号通路在脑缺血再灌注大鼠中发挥神经保护和血管生成作用
- 影响因子:2.75
- DOI:10.1007/s00702-019-02124-7
- 作者列表:"Wang, Xiaodong","Shi, Cunxian","Pan, Hongxia","Meng, Xiaowen","Ji, Fuhai
- 发表时间:2020-01-01
Abstract
The aims of this study were to study the effects of miR-2 on cerebral ischemia–reperfusion rats and to explore its further mechanism. Rats were assigned into sham, model, miR-22 control and miR-22 groups. Observation of neurological behaviors at 24 h after operation found that neurological functions were severely damaged in the model and miR-22 control groups and these damages were improved by miR-22. RT-PCR indicated that miR-22 mRNA level in the brain tissue was significantly decreased in the model and miR-22 control groups, but increased in the miR-22 group. TTC staining showed increased percentage of cerebral infarction volume in the model and miR-22 control groups and this increase was reduced by miR-22. Immunohistochemistry showed increased densities of CD34^+ and VEGF^+ microvessels in the cortex in the model and miR-22 control groups, which were further increased in the miR-22 group. ELISA showed increased serum VEGF and Ang-1 levels in the model and miR-22 control groups, which were also further increased in the miR-22 group. Western blot analysis showed increased phosphorylation level of PI3K and Akt in brain tissue in the model and miR-22 control groups, which were further increased in the miR-22 group. Administration of LY294002, a specific PI3K pathway inhibitor, significantly reversed all the effects of miR-22 on rats in the model group. miR-22 exerts its neuroprotective and angiogenic functions via the PI3K/Akt signaling pathway, at least partly, in rats under cerebral ischemia–reperfusion.
摘要
本研究旨在研究 miR-2 对大鼠脑缺血再灌注损伤的影响,并进一步探讨其作用机制。将大鼠分为假手术组、模型组、 miR-22 对照组和 miR-22 组。术后 24 h 神经行为观察发现,模型组和 miR-22 对照组神经功能严重受损,miR-22 改善。RT-PCR 检测结果显示,模型组和 miR-22 对照组脑组织 miR-22 mRNA 水平明显降低,而 miR-22 组则明显升高。TTC 染色显示模型组和 miR-22 对照组脑梗死体积百分比增加,miR-22 减少。免疫组化显示模型组和 miR-22 对照组皮层 CD34 ^ + 和 VEGF ^ + 微血管密度增加,miR-22 组进一步增加。ELISA 法显示,模型组和 Ang-1 对照组血清 VEGF 和 miR-22 水平升高,miR-22 组进一步升高。Western blot 分析显示模型组和 miR-22 对照组脑组织 PI3K 和 Akt 磷酸化水平升高,miR-22 组进一步升高。给予特异性 PI3K 通路抑制剂 LY294002 可显著逆转模型组大鼠 miR-22 的所有作用。 miR-22 通过 PI3K/Akt 信号通路发挥神经保护和血管生成功能,至少部分在脑缺血再灌注大鼠中发挥作用。
小狗阅读
帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。
METHODS:BACKGROUND:People with stroke are not meeting recommended levels of physical activity. The modifiable factors associated with post-stroke physical activity levels need to be identified to develop targeted interventions. OBJECTIVE:The objective of this study was to investigate the factors at discharge from inpatient rehabilitation that are associated with physical activity levels at 3 months following discharge. DESIGN:This was a prospective cohort study. METHODS:Sixty-four people with stroke completed baseline assessments at discharge from inpatient rehabilitation and 55 completed the follow-up 3 months later. The candidate factors (i.e. gait speed, balance, strength, cognition, mood and motivation) were measured at discharge. The primary outcome measure at follow-up was walking related activity (measured by wrist-worn accelerometer). Secondary outcome measures were physical activity participation (Activity Card Sort) and intensity of physical activity (International Physical Activity Questionnaire - Short 7 days). Adjusted separate multivariable linear regression models or proportional odds regression models were used to evaluate the associations between candidate factors and physical activity. RESULTS:Gait speed and balance were associated with all aspects of physical activity. Higher level of intrinsic motivation was also associated with higher physical activity participation. Anxiety demonstrated a significant non-linear relationship with physical activity participation. LIMITATIONS:Inclusion of fatigue and individual muscle strength could have provided further insights into associations with steps per day. CONCLUSION:The results demonstrated that better physical function at discharge from inpatient rehabilitation was associated with future increased levels of physical activity. Additionally, higher levels of motivation impacted on increased physical activity participation. The influence of anxiety on physical activity participation requires further exploration. Mixed-method study designs can be utilized to further understand the factors associated with post-stroke physical activity.
METHODS:Cerebral ischemia-reperfusion (I/R) is characterized by initial transient cerebral ischemia followed by reperfusion. Various pathophysiological processes are involved in brain injury and functional recovery during cerebral I/R. There are few studies on dynamic metabolic process after cerebral I/R. The present study was to observe dynamic alteration of brain injury, functional recovery, and metabolites after cerebral I/R in rats and discover potential metabolic markers. The cerebral I/R model was established by middle cerebral artery occlusion (MCAO) for 90 min, following reperfusion in rats. The results of cerebral infarction area, cerebral edema, and behavior test showed that there were dynamic changes in brain injury and functional recovery at different periods after cerebral I/R. Further analysis showed that the brain injury was severe on the first day of cerebral I/R, and there was a significant functional recovery from the 7th day of cerebral I/R, followed by an aggravation trend of brain injury from the days 7 to 28. Furthermore, Matrix-assisted laser desorption ionization mass spectrometry imaging analysis showed that the expression of ATP, glucose, and citric acid on 7th day was the highest during cerebral I/R, which indicated that energy metabolism and oxidative phosphorylation played important roles during cerebral I/R. In addition, the untargeted metabolomic results showed that the level of isocitric acid, the ratio of oxyglutaric acid/glutamic acid, and the level of pyruvic acid associated with the TCA cycle were also the highest on the 7th day during cerebral I/R, which indicated that the transient spontaneous recovery of ischemic brain on the 7th day after ischemia-reperfusion might be related to oxidative phosphorylation and energy metabolism in the brain in this period. In conclusion, the results suggest that some small molecule metabolites participate in the brain injury and functional recovery during cerebral I/R, which is of great significance to the development of therapeutic drugs and diagnostic markers.
METHODS:The aims of this study were to study the effects of miR-2 on cerebral ischemia–reperfusion rats and to explore its further mechanism. Rats were assigned into sham, model, miR-22 control and miR-22 groups. Observation of neurological behaviors at 24 h after operation found that neurological functions were severely damaged in the model and miR-22 control groups and these damages were improved by miR-22. RT-PCR indicated that miR-22 mRNA level in the brain tissue was significantly decreased in the model and miR-22 control groups, but increased in the miR-22 group. TTC staining showed increased percentage of cerebral infarction volume in the model and miR-22 control groups and this increase was reduced by miR-22. Immunohistochemistry showed increased densities of CD34^+ and VEGF^+ microvessels in the cortex in the model and miR-22 control groups, which were further increased in the miR-22 group. ELISA showed increased serum VEGF and Ang-1 levels in the model and miR-22 control groups, which were also further increased in the miR-22 group. Western blot analysis showed increased phosphorylation level of PI3K and Akt in brain tissue in the model and miR-22 control groups, which were further increased in the miR-22 group. Administration of LY294002, a specific PI3K pathway inhibitor, significantly reversed all the effects of miR-22 on rats in the model group. miR-22 exerts its neuroprotective and angiogenic functions via the PI3K/Akt signaling pathway, at least partly, in rats under cerebral ischemia–reperfusion.