Calpain inhibition ameliorates depression-like behaviors by reducing inflammation and promoting synaptic protein expression in the hippocampus.


  • 影响因子:4.42
  • DOI:10.1016/j.neuropharm.2020.108175
  • 作者列表:"Song Z","Shen F","Zhang Z","Wu S","Zhu G
  • 发表时间:2020-09-01

:Protease activity correlates with depressive or suicidal behaviors, with calpain activation being especially implicated in depression-like behaviors. However, the role of calpain in depression-like behaviors is currently unknown. In this study, the lipopolysaccharide (LPS) - and chronic unpredictable mild stress (CUMS)-induced depression models were used to evaluate the antidepressant effects of calpain inhibitors. Potential mechanisms were determined using pharmacological and biochemical methods. We found that i. p. injection of a calpain inhibitor, calpeptin, prevented LPS-induced depression-like behaviors, activation of astrocytes, inflammation, and reduction of synaptic protein expression levels. LPS injection (i.p.) promoted calpain activity, which degraded suprachiasmatic nucleus circadian oscillatory protein (SCOP). This led to the activation of ERK and nuclear translocation of nuclear factor kappa-B (NF-κB), the promotion of cytokine release, and the reduction of Arc, and PSD95 expression in the hippocampus. In contrast, i. p. injection of calpeptin blocked these changes. Furthermore, intraventricular injection of calpain inhibitor (PD150606) or an ERK inhibitor ameliorated the LPS-induced depression-like behaviors. Administration of calpeptin also remedied CUMS-induced depression-like behaviors, degradation of SCOP, activation of astrocytes, and reduction of synaptic protein expression levels. Finally, we also demonstrated that memantine, an N-methyl-d-aspartic acid (NMDA) receptor antagonist blocks LPS-induced degradation of SCOP. Together, our results show that calpain inhibition ameliorates depression-like behaviors, probably by reducing inflammation and promoting synaptic protein expression in the hippocampus.


: 蛋白酶活性与抑郁或自杀行为相关,钙蛋白酶激活尤其与抑郁样行为有关。然而,钙蛋白酶在抑郁样行为中的作用目前尚不清楚。本研究采用脂多糖 (LPS) 和慢性不可预见性温和应激 (CUMS) 诱导的抑郁模型评价钙蛋白酶抑制剂的抗抑郁作用。使用药理学和生物化学方法确定潜在机制。我们发现 i. p.注射一种钙蛋白酶抑制剂 calpeptin,可以防止 LPS 诱导的抑郁样行为、星形胶质细胞的激活、炎症和突触蛋白表达水平的降低。LPS 注射 (i.p.) 促进 calpain 活性,其降解视交叉上核昼夜节律振荡蛋白 (SCOP)。从而导致 ERK 的激活和核因子 κ B (NF-κ B) 的核转位,促进细胞因子释放,减少 Arc 、和 PSD95 在海马中的表达。相比之下,i. p.注射 calpeptin 阻断了这些变化。此外,脑室内注射钙蛋白酶抑制剂 (PD150606) 或 ERK 抑制剂可改善 LPS 诱导的抑郁样行为。给予 calpeptin 还纠正了 CUMS 诱导的抑郁样行为、 SCOP 降解、星形胶质细胞激活和突触蛋白表达水平降低。最后,我们还证明了美金刚,一种 N-甲基-d-天冬氨酸 (NMDA) 受体拮抗剂阻断 LPS 诱导的 SCOP 降解。总之,我们的研究结果表明,钙蛋白酶抑制改善抑郁样行为,可能是通过减少炎症和促进海马突触蛋白表达。



来源期刊:Molecular psychiatry
作者列表:["Li C","Meng F","Garza JC","Liu J","Lei Y","Kirov SA","Guo M","Lu XY"]

METHODS::The adipocyte-derived hormone adiponectin has a broad spectrum of functions beyond metabolic control. We previously reported that adiponectin acts in the brain to regulate depression-related behaviors. However, its underlying neural substrates have not been identified. Here we show that adiponectin receptor 1 (AdipoR1) is expressed in the dorsal raphe nucleus (DRN) and colocalized with tryptophan hydroxylase 2 (TPH2), a marker of serotonin (5-HT) neurons. Selective deletion of AdipoR1 in 5-HT neurons induced anhedonia in male mice, as indicated by reduced female urine sniffing time and saccharin preference, and behavioral despair in female mice and enhanced stress-induced decrease in sucrose preference in both sexes. The expression levels of TPH2 were downregulated with a concurrent reduction of 5-HT-immunoreactivity in the DRN and its two major projection regions, the hippocampus and medial prefrontal cortex (mPFC), in male but not female mice lacking AdipoR1 in 5-HT neurons. In addition, serotonin transporter (SERT) expression was upregulated in both DRN projection fields of male mice but only in the mPFC of female mice. These changes presumably lead to decreased 5-HT synthesis and/or increased 5-HT reuptake, thereby reducing 5-HT transmission. The augmented behavioral responses to the selective serotonin reuptake inhibitor fluoxetine but not desipramine, a selective norepinephrine reuptake inhibitor, observed in conditional knockout male mice supports deficient 5-HT transmission underlying depression-related phenotypes. Our results indicate that adiponectin acts on 5-HT neurons through AdipoR1 receptors to regulate depression-related behaviors in a sex-dependent manner.

关键词: 暂无
翻译标题与摘要 下载文献
作者列表:["Torretta S","Rampino A","Basso M","Pergola G","Di Carlo P","Shin JH","Kleinman JE","Hyde TM","Weinberger DR","Masellis R","Blasi G","Pennuto M","Bertolino A"]

METHODS::Multiple schizophrenia (SCZ) risk loci may be involved in gene co-regulation mechanisms, and analysis of coexpressed gene networks may help to clarify SCZ molecular basis. We have previously identified a dopamine D2 receptor (DRD2) coexpression module enriched for SCZ risk genes and associated with cognitive and neuroimaging phenotypes of SCZ, as well as with response to treatment with antipsychotics. Here we aimed to identify regulatory factors modulating this coexpression module and their relevance to SCZ. We performed motif enrichment analysis to identify transcription factor (TF) binding sites in human promoters of genes coexpressed with DRD2. Then, we measured transcript levels of a group of these genes in primary mouse cortical neurons in basal conditions and upon overexpression and knockdown of predicted TFs. Finally, we analyzed expression levels of these TFs in dorsolateral prefrontal cortex (DLPFC) of SCZ patients. Our in silico analysis revealed enrichment for NURR1 and ERR1 binding sites. In neuronal cultures, the expression of genes either relevant to SCZ risk (Drd2, Gatad2a, Slc28a1, Cnr1) or indexing coexpression in our module (Btg4, Chit1, Osr1, Gpld1) was significantly modified by gain and loss of Nurr1 and Err1. Postmortem DLPFC expression data analysis showed decreased expression levels of NURR1 and ERR1 in patients with SCZ. For NURR1 such decreased expression is associated with treatment with antipsychotics. Our results show that NURR1 and ERR1 modulate the transcription of DRD2 coexpression partners and support the hypothesis that NURR1 is involved in the response to SCZ treatment.SIGNIFICANCE STATEMENT In the present study, we provide in silico and experimental evidence for a role of the TFs NURR1 and ERR1 in modulating the expression pattern of genes coexpressed with DRD2 in human DLPFC. Notably, genetic variations in these genes is associated with SCZ risk and behavioral and neuroimaging phenotypes of the disease, as well as with response to treatment. Furthermore, this study presents novel findings on a possible interplay between D2 receptor-mediated dopamine signaling involved in treatment with antipsychotics and the transcriptional regulation mechanisms exerted by NURR1. Our results suggest that coexpression and co-regulation mechanisms may help to explain some of the complex biology of genetic associations with SCZ.

翻译标题与摘要 下载文献
作者列表:["Chadha R","Meador-Woodruff JH"]

METHODS::Abnormal neurotransmission is central to schizophrenia (SZ). Alterations across multiple neurotransmitter systems in SZ suggest that this illness may be associated with dysregulation of core intracellular processes such as signaling pathways that underlie the regulation and integration of these systems. The AKT-mTOR signaling cascade has been implicated in SZ by gene association, postmortem brain and animal studies. AKT and mTOR are serine/threonine kinases which play important roles in cell growth, proliferation, survival, and differentiation. Both AKT and mTOR require phosphorylation at specific sites for their complete activation. mTOR forms two functionally distinct multiprotein complexes, mTOR Complex 1 (mTORC1) and Complex 2 (mTORC2). mTORC1 mediates ribosome biogenesis, protein translation, and autophagy, whereas mTORC2 contributes to actin dynamics. Altered protein synthesis and actin dynamics can lead to an abnormal neuronal morphology resulting in deficits in learning and memory. Currently, there is a lack of direct evidence to support the hypothesis of disrupted mTOR signaling in SZ, and we have addressed this by characterizing this signaling pathway in SZ brain. We found a reduction in AKT and mTOR protein expression and/or phosphorylation state in dorsolateral prefrontal cortex (DLPFC) from 22 pairs of SZ and matched comparison subjects. We also found reduced protein expression of GβL, a subunit protein common to both mTOR complexes. We further investigated mTOR complex-specific subunit composition and phosphorylation state, and found abnormal mTOR expression in both complexes in SZ DLPFC. These findings provide evidence that proteins associated with the AKT-mTOR signaling cascade are downregulated in SZ DLPFC.

关键词: 暂无
翻译标题与摘要 下载文献