小狗阅读会员会员
有解析的医学SCI阅读工具

扫码登录小狗阅读

阅读SCI医学文献

Lineage reversion drives WNT independence in intestinal cancer.

谱系逆转驱动肠癌中 WNT 独立性。

  • 影响因子:6.22
  • DOI:10.1158/2159-8290.CD-19-1536
  • 作者列表:"Han T","Goswami S","Hu Y","Tang F","Zafra MP","Murphy C","Cao Z","Poirier JT","Khurana E","Elemento O","Hechtman JF","Ganesh K","Yaeger R","Dow LE
  • 发表时间:2020-06-16
Abstract

:The WNT pathway is a fundamental regulator of intestinal homeostasis and hyperactivation of WNT signaling is the major oncogenic driver in colorectal cancer (CRC). To date, there are no described mechanisms that bypass WNT dependence in intestinal tumors. Here, we show that while WNT suppression blocks tumor growth in most organoid and in vivo CRC models, the accumulation of CRC-associated genetic alterations enables drug resistance and WNT-independent growth. In intestinal epithelial cells harboring mutations in KRAS or BRAF, together with disruption of p53 and SMAD4, transient TGFB exposure drives YAP/TAZ-dependent transcriptional reprogramming and lineage reversion. Acquisition of embryonic intestinal identity is accompanied by a permanent loss of adult intestinal lineages, and long-term WNT-independent growth. This work identifies genetic and microenvironmental factors that drive WNT inhibitor resistance, defines a new mechanism for WNT-independent CRC growth and reveals how integration of associated genetic alterations and extracellular signals can overcome lineage-dependent oncogenic programs.

摘要

: WNT 通路是肠道稳态的基本调节因子,WNT 信号的过度激活是结直肠癌 (CRC) 的主要致癌驱动因素。到目前为止,还没有描述肠道肿瘤中绕过 WNT 依赖性的机制。在这里,我们表明,虽然 WNT 抑制在大多数类器官和体内 CRC 模型中阻断肿瘤生长,但 CRC 相关遗传改变的积累使耐药性和 WNT 非依赖性生长。在携带 KRAS 或 BRAF 突变的肠上皮细胞中,连同 p53 和 SMAD4 的破坏,瞬时 TGFB 暴露驱动 YAP/TAZ 依赖性转录重编程和谱系逆转。胚胎肠道身份的获得伴随着成人肠道谱系的永久缺失,以及长期不依赖 WNT 的生长。这项工作确定了驱动 WNT 抑制剂抗性的遗传和微环境因素,定义了 WNT 非依赖性 CRC 生长的新机制,并揭示了相关遗传改变和细胞外信号的整合如何克服谱系依赖性致癌程序。

关键词:
阅读人数:3人
下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:2.03
发表时间:2020-01-27
DOI:10.1080/09553002.2020.1721609
作者列表:["Anuja K","Kar M","Chowdhury AR","Shankar G","Padhi S","Roy S","Akhter Y","Rath AK","Banerjee B"]

METHODS::Aims: Radiotherapy is predominantly used as one of the treatment modalities to treat local tumor in colorectal cancer (CRC). Hindrance in disease treatment can be attributed to radio-tolerance of cancer stem cells (CSCs) subsistence in the tumor. Understanding the radio-resistant property of CSCs might help in the accomplishment of targeted radiotherapy treatment and increased disease-free survival. Telomeric RAP1 contributes in modulation of various transcription factors leading to aberrant cell proliferation and tumor cell migration. Therefore, we investigated the role of RAP1 in maintaining resistance phenotype and acquired stemness in radio-resistant cells.Main Methods: Characterization of HCT116 derived radio-resistant cell (HCT116RR) was performed by cell survival and DNA damage profiling. RAP1 silenced cells were investigated for DNA damage and expression of CSC markers through western blotting and Real-time PCR post-irradiation. Molecular docking and co-immunoprecipitation study were performed to investigate RAP1 and KLF4 interaction followed by RAP1 protein status profiling in CRC patient.Key findings: We established radio-resistant cells, which showed tolerance to radiotherapy and elevated expression of CSC markers along with RAP1. RAP1 silencing showed enhanced DNA damage and reduced expression of CSC markers post-irradiation. We observed strong physical interaction between RAP1 and KLF4 protein. Furthermore, higher RAP1 expression was observed in the tumor of CRC patients. Dataset analysis also revealed that high expression of RAP1 expression is associated with poor prognosis.Significance: We conclude that higher expression ofRAP1 implicates its possible role in promoting radio-resistance in CRC cells by modulating DNA damage and CSC phenotype.

翻译标题与摘要 下载文献
影响因子:2.69
发表时间:2020-01-18
DOI:10.1016/j.bbrc.2020.01.048
作者列表:["Li Y","Wang Z","Jin J","Zhu SX","He GQ","Li SH","Wang J","Cai Y"]

METHODS::Cancer stem-like cells are rare immortal cells within tumor, which are thought to play important roles in ionizing radiation (IR) therapy-resistance. Quercetin is a natural flavonoid with potential anti-cancer properties without significant cytotoxicity in normal tissues. In this study, we demonstrated that quercetin-IR combination treatment exhibited more dramatic anti-cancer effect than either quercetin or IR treatment alone via targeting colon cancer stem cells (CSCs) and inhibiting the Notch-1 signaling. These effects were further verified by in vivo studies which showed remarkable decrease of the CSCs markers and the expression of Notch-1 signaling proteins in human colon cancer xenografts in nude mice. Co-treatment with quercetin and low dose of radiation significantly reduced the expressions of all five proteins of γ-secretase complex in HT-29 and DLD-1 cells. In addition, ectopic expression of the Notch intracellular domain (NICD) partly reversed the inhibition effects by the combination therapy. In conclusion, our results indicated that the combination of quercetin (20 μM) and IR (5Gy) might be a promising therapeutic strategy for colon cancer treatment by targeting colon cancer stem-like cells and inhibiting the Notch-1 signaling. In future studies, we intend to further explore the potential therapeutic efficacy of the quercetin-radiation combination treatment in clinical trials.

翻译标题与摘要 下载文献
影响因子:2.46
发表时间:2020-01-01
DOI:10.1097/COC.0000000000000609
作者列表:["Appelt AL","Andersen RF","Lindebjerg J","Jakobsen A"]

METHODS:OBJECTIVES:Long-term prevention of metastatic disease remains a challenge in locally advanced rectal cancer, and robust pretreatment prognostic factors for metastatic progression are lacking. We hypothesized that detecting circulating tumor-specific DNA (ctDNA) based on hypermethylation of the neuropeptide Y gene (meth-ctDNA) could be a prognostic marker in the neoadjuvant setting; we examined this in a secondary, explorative analysis of a prospective trial. MATERIALS AND METHODS:Serum samples were prospectively collected in a phase III trial for locally advanced rectal cancer. Positivity for and fractional abundance of meth-ctDNA in baseline samples were estimated. Overall survival (OS) and the rate of distant metastases were compared between meth-ctDNA positive and negative patients; other prognostic factors were controlled for in multivariate Cox regression. Importance of quantitative load was examined by considering the fractional abundance of meth-ctDNA relative to total circulating DNA. RESULTS:Baseline serum samples were available for 146 patients. In total, 30 patients had presence of meth-ctDNA, with no correlation with cT (P=0.8) or cN (P=0.6) stages. Median follow-up was 10.6 years for OS and 5.1 years for freedom from distant metastases. Patients with meth-ctDNA had significantly worse 5-year OS (47% vs. 69%), even when controlling for other prognostic factors (hazard ratio=2.08; 95% confidence interval, 1.23-1.51). This seemed mainly driven by disparity in the rate of distant metastases (55% vs. 72% at 5 y, P=0.01); hazard ratio=2.20 (95% confidence interval, 1.19-4.07, P=0.01) in multivariate analysis. Increased quantitative load was highly significant for worse outcomes. CONCLUSIONS:Meth-ctDNA could be a potential prognostic marker in the neoadjuvant setting and may, if validated, identify patients at increased risk of distant metastases.

关键词: 暂无
翻译标题与摘要 下载文献
方向

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

科研福利

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: