小狗阅读会员会员
医学顶刊SCI精读工具

扫码登录小狗阅读

阅读SCI医学文献
Document
订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}

    按需关注领域/方向,精准获取前沿热点

  • {{item.title}}

    {{item.follow}}人关注

  • {{item.subscribe_count}}人订阅

    IF:{{item.impact_factor}}

    {{item.title}}

Interference chromatography: a novel approach to optimizing chromatographic selectivity and separation performance for virus purification.

干扰色谱: 优化病毒纯化色谱选择性和分离性能的新方法。

  • 影响因子:2.82
  • DOI:10.1186/s12896-020-00627-w
  • 作者列表:"Santry LA","Jacquemart R","Vandersluis M","Zhao M","Domm JM","McAusland TM","Shang X","Major PM","Stout JG","Wootton SK
  • 发表时间:2020-06-17
Abstract

BACKGROUND:Oncolytic viruses are playing an increasingly important role in cancer immunotherapy applications. Given the preclinical and clinical efficacy of these virus-based therapeutics, there is a need for fast, simple, and inexpensive downstream processing methodologies to purify biologically active viral agents that meet the increasingly higher safety standards stipulated by regulatory authorities like the Food and Drug Administration and the European Agency for the Evaluation of Medicinal Products. However, the production of virus materials for clinical dosing of oncolytic virotherapies is currently limited-in quantity, quality, and timeliness-by current purification technologies. Adsorption of virus particles to solid phases provides a convenient and practical choice for large-scale fractionation and recovery of viruses from cell and media contaminants. Indeed, chromatography has been deemed the most promising technology for large-scale purification of viruses for biomedical applications. The implementation of new chromatography media has improved process performance, but low yields and long processing times required to reach the desired purity are still limiting. RESULTS:Here we report the development of an interference chromatography-based process for purifying high titer, clinical grade oncolytic Newcastle disease virus using NatriFlo® HD-Q membrane technology. This novel approach to optimizing chromatographic performance utilizes differences in molecular bonding interactions to achieve high purity in a single ion exchange step. CONCLUSIONS:When used in conjunction with membrane chromatography, this high yield method based on interference chromatography has the potential to deliver efficient, scalable processes to enable viable production of oncolytic virotherapies.

摘要

背景: 溶瘤病毒在肿瘤免疫治疗应用中发挥着越来越重要的作用。鉴于这些基于病毒的治疗药物的临床前和临床疗效,需要快速、简单、和廉价的下游加工方法,以纯化符合监管机构如食品和药物管理局和欧洲医药产品评价机构规定的越来越高的安全标准的生物活性病毒制剂。然而,用于临床给药的溶瘤病毒疗法的病毒材料的生产目前受到目前纯化技术的限制 -- 数量、质量和及时性。病毒颗粒对固相的吸附为从细胞和介质污染物中大规模分离和回收病毒 es 提供了方便和实用的选择。事实上,色谱法已被认为是生物医学应用中病毒大规模纯化的最有前途的技术。新色谱介质的实施改善了工艺性能,但达到所需纯度所需的低产率和长处理时间仍然受到限制。 结果: 在这里,我们报道了一种基于干扰色谱的方法,用于纯化高滴度、临床级溶瘤新城疫病毒,使用钠氟。®HD-Q 膜技术。这种优化色谱性能的新方法利用分子键相互作用的差异,在单个离子交换步骤中实现高纯度。 结论: 当与膜色谱结合使用时,这种基于干扰色谱的高产量方法有可能提供高效、可扩展的工艺,以实现溶瘤病毒疗法的可行生产。

下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:5.25
发表时间:2020-01-23
DOI:10.1158/1535-7163.MCT-19-0947
作者列表:["Joshi S","Liu KX","Zulcic M","Singh AR","Skola D","Glass CK","Sanders PD","Sharabi AB","Pham TV","Tamayo P","Shiang D","Dinh HQ","Hedrick CC","Morales GA","Garlich JR","Durden DL"]

METHODS::Macrophages (MΦ) play a critical role in tumor growth, immunosuppression and inhibition of adaptive immune responses in cancer. Hence, targeting signaling pathways in MΦs that promote tumor immunosuppression will provide therapeutic benefit. PI3Kγ has been recently established by our group and others as a novel immuno-oncology target. Herein, we report that a macrophage Syk-PI3K axis drives polarization of immunosuppressive MΦs which establish an immunosuppressive tumor microenvironment in in vivo syngeneic tumor models. Genetic or pharmacological inhibition of Syk and/or PI3Kγ in MΦs promotes a pro-inflammatory MΦphenotype, restores CD8+ T cell activity, destabilizes HIF under hypoxia, and stimulates an antitumor immune response. Assay for Transposase-accessible Chromatin using Sequencing (ATAC-seq) analyses on the bone marrow derived macrophages (BMDMs) show that inhibition of Syk kinase promotes activation and binding of NF-κB motif in SykMC-KO BMDMs, thus stimulating immunostimulatory transcriptional programming in MΦs to suppress tumor growth. Finally, we have developed in silico the "first in class" dual Syk/PI3K inhibitor, SRX3207, for the combinatorial inhibition of Syk and PI3K in one small molecule. This chemotype demonstrates efficacy in multiple tumor models and represents a novel combinatorial approach to activate antitumor immunity.

关键词: 暂无
翻译标题与摘要 下载文献
影响因子:12.19
发表时间:2020-01-23
来源期刊:Nature communications
DOI:10.1038/s41467-020-14332-x
作者列表:["Fu S","He K","Tian C","Sun H","Zhu C","Bai S","Liu J","Wu Q","Xie D","Yue T","Shen Z","Dai Q","Yu X","Zhu S","Liu G","Zhou R","Duan S","Tian Z","Xu T","Wang H","Bai L"]

METHODS::Dysfunction of invariant natural killer T (iNKT) cells in tumor microenvironment hinders their anti-tumor efficacy, and the underlying mechanisms remain unclear. Here we report that iNKT cells increase lipid biosynthesis after activation, and that is promoted by PPARγ and PLZF synergically through enhancing transcription of Srebf1. Among those lipids, cholesterol is required for the optimal IFN-γ production from iNKT cells. Lactic acid in tumor microenvironment reduces expression of PPARγ in intratumoral iNKT cells and consequently diminishes their cholesterol synthesis and IFN-γ production. Importantly, PPARγ agonist pioglitazone, a thiazolidinedione drug for type 2 diabetes, successfully restores IFN-γ production in tumor-infiltrating iNKT cells from both human patients and mouse models. Combination of pioglitazone and alpha-galactosylceramide treatments significantly enhances iNKT cell-mediated anti-tumor immune responses and prolongs survival of tumor-bearing mice. Our studies provide a strategy to augment the anti-tumor efficacy of iNKT cell-based immunotherapies via promoting their lipid biosynthesis.

关键词: 暂无
翻译标题与摘要 下载文献
影响因子:8.58
发表时间:2020-01-17
DOI:10.1158/2326-6066.CIR-19-0517
作者列表:["Maruoka Y","Furusawa A","Okada R","Inagaki F","Fujimura D","Wakiyama H","Kato T","Nagaya T","Choyke PL","Kobayashi H"]

METHODS::Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and selective cancer treatment that induces necrotic and immunogenic cell death and utilizes a monoclonal antibody conjugated to a photo-absorber dye, IR700DX, activated by NIR light. Although CD44 is surface cancer marker associated with drug resistance, anti-CD44-IR700 NIR-PIT results in inhibited cell growth and prolonged survival in multiple tumor types. Meanwhile, anti-CD25-IR700-targeted NIR-PIT has been reported to achieve selective and local depletion of FOXP3+CD25+CD4+ regulatory T cells (Tregs), which are primary immunosuppressive cells in the tumor microenvironment (TME), resulting in activation of local antitumor immunity. Combined NIR-PIT with CD44- and CD25-targeted agents has the potential to directly eliminate tumor cells and also amplify the immune response by removing FOXP3+CD25+CD4+ Tregs from the TME. We investigated the difference in therapeutic effects of CD44-targeted NIR-PIT alone, CD25-targeted NIR-PIT alone, and the combination of CD44- and CD25-targeted NIR-PIT in several syngeneic tumor models, including MC38-luc, LL/2, and MOC1. The combined NIR-PIT showed significant tumor growth inhibition and prolonged survival compared with CD44-targeted NIR-PIT alone in all tumor models and showed prolonged survival compared with CD25-targeted NIR-PIT alone in MC38-luc and LL/2 tumors. Combined CD44/CD25 NIR-PIT also resulted in some complete remissions, whereas this was not achieved with either type of NIR-PIT alone. Therefore, combined NIR-PIT simultaneously targeting cancer antigens and immunosuppressive cells in the TME may be more effective than either type of NIR-PIT alone and may have potential to induce prolonged immune responses in treated tumors.

关键词: 暂无
翻译标题与摘要 下载文献
方向

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: