扫码登录小狗阅读
Towards rational cancer therapeutics: optimizing dosing, delivery, scheduling and combinations.
走向合理的癌症治疗: 优化给药、调度和组合。
- 影响因子:4.47
- DOI:10.1002/cpt.1954
- 作者列表:"Ferrer F","Fanciullino R","Milano G","Ciccolini J
- 发表时间:2020-06-18
Abstract
:The current trend to personalize anticancer therapies mostly relies on selecting the best drug or combination of drugs to achieve optimal efficacy in patients. In addition to the comprehensive genetic and molecular knowledge of each tumor before choosing the drugs to be given, there is probably much room left for improvement by further personalizing the very modes the drugs are given, once they have been carefully selected. In particular, shifting from standard dosing to tailored dosing should help maintaining drug exposure levels in the right therapeutic window, thus ensuring that the efficacy/toxicity balance is optimal. This paper covers the current knowledge regarding PK/PD relationships of anticancer agents, from decades-old cytotoxics to the latest immune checkpoint inhibitors, the most frequent sources for long-neglected inter-patient variability impacting on drug exposure levels, and what could be done to achieve real personalized medicine in oncology such as implementing therapeutic drug monitoring with adaptive dosing strategies or using model-driven modalities for personalized dosing and scheduling.
摘要
: 目前个性化抗癌治疗的趋势大多依赖于选择最佳药物或联合用药,以在患者中获得最佳疗效。除了在选择药物之前对每种肿瘤的全面的遗传和分子知识之外,通过进一步个性化药物给药的模式,可能还有很大的改进空间,一旦他们被精心挑选。特别是,从标准给药转向定制给药应有助于在正确的治疗窗保持药物暴露水平,从而确保疗效/毒性平衡最佳。本文涵盖了目前关于抗癌药物 PK/PD 关系的知识,从几十年前的细胞毒素到最新的免疫检查点抑制剂,长期被忽视的影响药物暴露水平的患者间变异性的最常见来源,以及可以做些什么来实现肿瘤学中真正的个性化医疗,例如使用自适应给药策略实施治疗药物监测或使用模型驱动的方式进行个性化给药和调度。
小狗阅读
帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。
METHODS::Macrophages (MΦ) play a critical role in tumor growth, immunosuppression and inhibition of adaptive immune responses in cancer. Hence, targeting signaling pathways in MΦs that promote tumor immunosuppression will provide therapeutic benefit. PI3Kγ has been recently established by our group and others as a novel immuno-oncology target. Herein, we report that a macrophage Syk-PI3K axis drives polarization of immunosuppressive MΦs which establish an immunosuppressive tumor microenvironment in in vivo syngeneic tumor models. Genetic or pharmacological inhibition of Syk and/or PI3Kγ in MΦs promotes a pro-inflammatory MΦphenotype, restores CD8+ T cell activity, destabilizes HIF under hypoxia, and stimulates an antitumor immune response. Assay for Transposase-accessible Chromatin using Sequencing (ATAC-seq) analyses on the bone marrow derived macrophages (BMDMs) show that inhibition of Syk kinase promotes activation and binding of NF-κB motif in SykMC-KO BMDMs, thus stimulating immunostimulatory transcriptional programming in MΦs to suppress tumor growth. Finally, we have developed in silico the "first in class" dual Syk/PI3K inhibitor, SRX3207, for the combinatorial inhibition of Syk and PI3K in one small molecule. This chemotype demonstrates efficacy in multiple tumor models and represents a novel combinatorial approach to activate antitumor immunity.
METHODS::Dysfunction of invariant natural killer T (iNKT) cells in tumor microenvironment hinders their anti-tumor efficacy, and the underlying mechanisms remain unclear. Here we report that iNKT cells increase lipid biosynthesis after activation, and that is promoted by PPARγ and PLZF synergically through enhancing transcription of Srebf1. Among those lipids, cholesterol is required for the optimal IFN-γ production from iNKT cells. Lactic acid in tumor microenvironment reduces expression of PPARγ in intratumoral iNKT cells and consequently diminishes their cholesterol synthesis and IFN-γ production. Importantly, PPARγ agonist pioglitazone, a thiazolidinedione drug for type 2 diabetes, successfully restores IFN-γ production in tumor-infiltrating iNKT cells from both human patients and mouse models. Combination of pioglitazone and alpha-galactosylceramide treatments significantly enhances iNKT cell-mediated anti-tumor immune responses and prolongs survival of tumor-bearing mice. Our studies provide a strategy to augment the anti-tumor efficacy of iNKT cell-based immunotherapies via promoting their lipid biosynthesis.
METHODS::Near-infrared photoimmunotherapy (NIR-PIT) is a newly developed and selective cancer treatment that induces necrotic and immunogenic cell death and utilizes a monoclonal antibody conjugated to a photo-absorber dye, IR700DX, activated by NIR light. Although CD44 is surface cancer marker associated with drug resistance, anti-CD44-IR700 NIR-PIT results in inhibited cell growth and prolonged survival in multiple tumor types. Meanwhile, anti-CD25-IR700-targeted NIR-PIT has been reported to achieve selective and local depletion of FOXP3+CD25+CD4+ regulatory T cells (Tregs), which are primary immunosuppressive cells in the tumor microenvironment (TME), resulting in activation of local antitumor immunity. Combined NIR-PIT with CD44- and CD25-targeted agents has the potential to directly eliminate tumor cells and also amplify the immune response by removing FOXP3+CD25+CD4+ Tregs from the TME. We investigated the difference in therapeutic effects of CD44-targeted NIR-PIT alone, CD25-targeted NIR-PIT alone, and the combination of CD44- and CD25-targeted NIR-PIT in several syngeneic tumor models, including MC38-luc, LL/2, and MOC1. The combined NIR-PIT showed significant tumor growth inhibition and prolonged survival compared with CD44-targeted NIR-PIT alone in all tumor models and showed prolonged survival compared with CD25-targeted NIR-PIT alone in MC38-luc and LL/2 tumors. Combined CD44/CD25 NIR-PIT also resulted in some complete remissions, whereas this was not achieved with either type of NIR-PIT alone. Therefore, combined NIR-PIT simultaneously targeting cancer antigens and immunosuppressive cells in the TME may be more effective than either type of NIR-PIT alone and may have potential to induce prolonged immune responses in treated tumors.