扫码登录小狗阅读
Efficacy of probiotics on cognition, and biomarkers of inflammation and oxidative stress in adults with Alzheimer's disease or mild cognitive impairment - a meta-analysis of randomized controlled trials.
益生菌对阿尔茨海默病或轻度认知障碍成人患者认知的疗效,以及炎症和氧化应激的生物标志物-随机对照试验的荟萃分析。
- 影响因子:5.5150
- DOI:10.18632/aging.102810
- 作者列表:"Den H","Dong X","Chen M","Zou Z
- 发表时间:2020-02-15
Abstract
:Probiotics are live microbes that confer health benefits to the host. Preliminary animal evidence supports the potential role of probiotics in ameliorating cognitive health, however, findings from clinical trials in Alzheimer's disease (AD) or mild cognitive impairment (MCI) subjects are controversial. Thus, a meta-analysis is needed to clarify the efficacy of probiotics on cognition in AD or MCI patients. EMBASE, PubMed, Web of Science and Cochrane library were systematically searched and manually screened for relevant published randomized controlled trials (RCTs). Among the 890 citations identified, 5 studies involving 297 subjects met eligibility. There was a significant improvement in cognition (SMD = 0.37; 95% CI, 0.14, 0.61; P = 0.002; I2 = 24%), while a significant reduction in malondialdehyde (SMD = -0.60; 95% CI, -0.91, -0.28; P = 0.000; I2 = 0.0%) and high-sensitivity C-reactive protein (SMD = -0.57; 95% CI, -0.95, -0.20; P = 0.003; I2 = 0.0%) post-intervention levels between the probiotics and control group. This meta-analysis indicated that probiotics improved cognitive performance in AD or MCI patients, possibly through decreasing levels of inflammatory and oxidative biomarkers. However, current evidence is insufficient, and more reliable evidence from large-scale, long-period, RCT is needed.
摘要
: 益生菌是赋予宿主健康益处的活微生物。初步动物证据支持益生菌在改善认知健康方面的潜在作用,然而,阿尔茨海默病 (AD) 或轻度认知障碍 (MCI) 受试者的临床试验结果存在争议。因此,需要一项荟萃分析来阐明益生菌对 AD 或 MCI 患者认知的疗效。系统检索 EMBASE 、 PubMed 、 Web of Science 和 Cochrane library 并人工筛选相关已发表的随机对照试验 (rct)。在确定的 890 条引文中,有 5 项研究涉及 297 名受试者符合资格。认知方面有显著改善 (SMD = 0.37; 95% CI,0.14,0.61; P = 0.002; I2 = 24%),而丙二醛显著降低 (SMD =-0.60; 95% CI,-0.91,-0.28; P = 0.000; I2 = 0.0%) 和高敏 C 反应蛋白(SMD =-0.57; 95% CI,-0.95,-0.20; P = 0.003; I2 = 0.0%) 益生菌组和对照组之间的干预后水平。这项荟萃分析表明,益生菌可能通过降低炎症和氧化生物标志物的水平来改善 AD 或 MCI 患者的认知能力。然而,目前证据不足,需要更多来自大规模、长期 RCT 的可靠证据。
小狗阅读
帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。
METHODS::Identifying disease-causing pathways and drugs that target them in Parkinson's disease (PD) has remained challenging. We uncovered a PD-relevant pathway in which the stress-regulated heterodimeric transcription complex CHOP/ATF4 induces the neuron prodeath protein Trib3 that in turn depletes the neuronal survival protein Parkin. Here we sought to determine whether the drug adaptaquin, which inhibits ATF4-dependent transcription, could suppress Trib3 induction and neuronal death in cellular and animal models of PD. Neuronal PC12 cells and ventral midbrain dopaminergic neurons were assessed in vitro for survival, transcription factor levels and Trib3 or Parkin expression after exposure to 6-hydroxydopamine or 1-methyl-4-phenylpyridinium with or without adaptaquin co-treatment. 6-hydroxydopamine injection into the medial forebrain bundle was used to examine the effects of systemic adaptaquin on signaling, substantia nigra dopaminergic neuron survival and striatal projections as well as motor behavior. In both culture and animal models, adaptaquin suppressed elevation of ATF4 and/or CHOP and induction of Trib3 in response to 1-methyl-4-phenylpyridinium and/or 6-hydroxydopamine. In culture, adaptaquin preserved Parkin levels, provided neuroprotection and preserved morphology. In the mouse model, adaptaquin treatment enhanced survival of dopaminergic neurons and substantially protected their striatal projections. It also significantly enhanced retention of nigrostriatal function. These findings define a novel pharmacological approach involving the drug adaptaquin, a selective modulator of hypoxic adaptation, for suppressing Parkin loss and neurodegeneration in toxin models of PD. As adaptaquin possesses an oxyquinoline backbone with known safety in humans, these findings provide a firm rationale for advancing it towards clinical evaluation in PD.
METHODS::Huntington's disease (HD) is an inherited progressive neurodegenerative disease characterized by brain atrophy particularly in the striatum that produces motor impairment, and cognitive and psychiatric disturbances. Multiple pathogenic mechanisms have been proposed including dysfunctions in neurotrophic support and calpain-overactivation, among others. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is an essential mediator of neurotrophin signaling. In adult brain, Kidins220 presents two main isoforms that differ in their carboxy-terminal length and critical protein-protein interaction domains. These variants are generated through alternative terminal exon splicing of the conventional exon 32 (Kidins220-C32) and the recently identified exon 33 (Kidins220-C33). The lack of domains encoded by exon 32 involved in key neuronal functions, including those controlling neurotrophin pathways, pointed to Kidins220-C33 as a form detrimental for neurons. However, the functional role of Kidins220-C33 in neurodegeneration or other pathologies, including HD, has not been explored. In the present work, we discover an unexpected selective downregulation of Kidins220-C33, in the striatum of HD patients, as well as in the R6/1 HD mouse model starting at early symptomatic stages. These changes are C33-specific as Kidins220-C32 variant remains unchanged. We also find the early decrease in Kidins220-C33 levels takes place in neurons, suggesting an unanticipated neuroprotective role for this isoform. Finally, using ex vivo assays and primary neurons, we demonstrate that Kidins220-C33 is downregulated by mechanisms that depend on the activation of the protease calpain. Altogether, these results strongly suggest that calpain-mediated Kidins220-C33 proteolysis modulates onset and/or progression of HD.
METHODS:BACKGROUND:Neuroinflammation has been recognized as an important factor in the pathogenesis of Alzheimer's disease (AD). One of the most recognized pathways in mediating neuroinflammation is the prostaglandin E2-EP1 receptor pathway. OBJECTIVE:Here, we examined the efficacy of the selective EP1 antagonist ONO-8713 in limiting amyloid-β (Aβ), lesion volumes, and behavioral indexes in AD mouse models after ischemic stroke. METHODS:Transgenic APP/PS1, 3xTgAD, and wildtype (WT) mice were subjected to permanent distal middle cerebral artery occlusion (pdMCAO) and sham surgeries. Functional outcomes, memory, anatomical outcomes, and Aβ concentrations were assessed 14 days after surgery. RESULTS:pdMCAO resulted in significant deterioration in functional and anatomical outcomes in the transgenic mice compared with the WT mice. No relevant differences were observed in the behavioral tests when comparing the ONO-8713 and vehicle-treated groups. Significantly lower cavitation (p = 0.0373) and percent tissue loss (p = 0.0247) were observed in APP/PS1 + ONO-8713 mice compared with the WT + ONO-8713 mice. However, the percent tissue injury was significantly higher in APP/PS1 + ONO-8713 mice compared with WT + ONO-8713 group (p = 0.0373). Percent tissue loss was also significantly lower in the 3xTgAD + ONO-8713 mice than in the WT + ONO-8713 mice (p = 0.0185). ONO-8713 treatment also attenuated cortical microgliosis in APP/PS1 mice as compared with the vehicle (p = 0.0079); however, no differences were observed in astrogliosis across the groups. Finally, APP/PS1 mice presented characteristic Aβ load in the cortex while 3xTgAD mice exhibited very low Aβ levels. CONCLUSION:In conclusion, under the experimental conditions, EP1 receptor antagonist ONO-8713 showed modest benefits on anatomical outcomes after stroke, mainly in APP/PS1 mice.