小狗阅读会员会员
医学顶刊SCI精读工具

扫码登录小狗阅读

阅读SCI医学文献
Document
订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}

    按需关注领域/方向,精准获取前沿热点

  • {{item.title}}

    {{item.follow}}人关注

  • {{item.subscribe_count}}人订阅

    IF:{{item.impact_factor}}

    {{item.title}}

A randomized controlled clinical trial of a hypothermically stored amniotic membrane for use in diabetic foot ulcers.

低温保存羊膜用于糖尿病足溃疡的随机对照临床试验。

  • 影响因子:1.39
  • DOI:10.2217/cer-2019-0142
  • 作者列表:"Serena TE","Yaakov R","Moore S","Cole W","Coe S","Snyder R","Patel K","Doner B","Kasper MA","Hamil R","Wendling S","Sabolinski ML
  • 发表时间:2020-01-01
Abstract

:Aim: Determine the effectiveness of hypothermically stored amniotic membrane (HSAM) versus standard of care (SOC) in diabetic foot ulcers (DFUs). Methods: A randomized controlled trial was conducted on 76 DFUs analyzed digitally. Results: Cox wound closure for HSAM (38 wounds) was significantly greater (p = 0.04) at weeks 12 (60 vs 38%), and 16 (63 vs 38%). The probability of wound closure increased by 75% (Hazard Ratio = 1.75; 95% CI: 1.16-2.70). HSAM showed >60% reductions in area (82 vs 58%; p = 0.02) and depth (65 vs 39%; p = 0.04) versus SOC. Conclusion: HSAM increased frequency and probability of wound closure in DFUs versus SOC.

摘要

目的: 确定低温保存羊膜 (HSAM) 与标准护理 (SOC) 治疗糖尿病足溃疡 (DFUs) 的有效性。方法: 对 76 例数字化分析的 dfu 进行随机对照试验。结果: HSAM (38 个伤口) 的 Cox 伤口闭合在 12 周 (60 vs 0.04) 和 16 周 (63 vs 38%) 时显著更大 (p = 38%)。伤口闭合的概率增加 75% (风险比 = 1.75; 95% CI: 1.16-2.70)。与 SOC 相比,HSAM 显示面积 (82 vs 60%; p = 58%) 和深度 (65 vs 0.02; p = 39%) 减少> 0.04。结论: HSAM 增加了 DFUs 与 SOC 中伤口闭合的频率和概率。

阅读人数:18人
下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:2.86
发表时间:2020-01-08
来源期刊:Acta Diabetologica
DOI:10.1007/s00592-019-01469-5
作者列表:["Benhalima, Katrien","Crombrugge, Paul","Moyson, Carolien","Verhaeghe, Johan","Vandeginste, Sofie","Verlaenen, Hilde","Vercammen, Chris","Maes, Toon","Dufraimont, Els","Block, Christophe","Jacquemyn, Yves","Mekahli, Farah","Clippel, Katrien","Den Bruel, Annick","Loccufier, Anne","Laenen, Annouschka","Minschart, Caro","Devlieger, Roland","Mathieu, Chantal"]

METHODS:Aims We aimed to develop a prediction model based on clinical and biochemical variables for gestational diabetes mellitus (GDM) based on the 2013 World Health Organization (WHO) criteria. Methods A total of 1843 women from a Belgian multi-centric prospective cohort study underwent universal screening for GDM. Using multivariable logistic regression analysis, a model to predict GDM was developed based on variables from early pregnancy. The performance of the model was assessed by receiver-operating characteristic (AUC) analysis. To account for over-optimism, an eightfold cross-validation was performed. The accuracy was compared with two validated models (van Leeuwen and Teede). Results A history with a first degree relative with diabetes, a history of smoking before pregnancy, a history of GDM, Asian origin, age, height and BMI were independent predictors for GDM with an AUC of 0.72 [95% confidence interval (CI) 0.69–0.76)]; after cross-validation, the AUC was 0.68 (95% CI 0.64–0.72). Adding biochemical variables, a history of a first degree relative with diabetes, a history of GDM, non-Caucasian origin, age, height, weight, fasting plasma glucose, triglycerides and HbA_1c were independent predictors for GDM, with an AUC of the model of 0.76 (95% CI 0.72–0.79); after cross-validation, the AUC was 0.72 (95% CI 0.66–0.78), compared to an AUC of 0.67 (95% CI 0.63–0.71) using the van Leeuwen model and an AUC of 0.66 (95% CI 0.62–0.70) using the Teede model. Conclusions A model based on easy to use variables in early pregnancy has a moderate accuracy to predict GDM based on the 2013 WHO criteria.

关键词: 暂无
翻译标题与摘要 下载文献
影响因子:19.14
发表时间:2020-01-01
来源期刊:Nature Medicine
DOI:10.1038/s41591-019-0724-8
作者列表:["Artzi, Nitzan Shalom","Shilo, Smadar","Hadar, Eran","Rossman, Hagai","Barbash-Hazan, Shiri","Ben-Haroush, Avi","Balicer, Ran D.","Feldman, Becca","Wiznitzer, Arnon","Segal, Eran"]

METHODS:Leveraging the availability of nationwide electronic health records from over 500,000 pregnancies in Israel, a machine-learning approach offers an alternative means of predicting gestational diabetes at high accuracy in the early stages of pregnancy. Gestational diabetes mellitus (GDM) poses increased risk of short- and long-term complications for mother and offspring^ 1 – 4 . GDM is typically diagnosed at 24–28 weeks of gestation, but earlier detection is desirable as this may prevent or considerably reduce the risk of adverse pregnancy outcomes^ 5 , 6 . Here we used a machine-learning approach to predict GDM on retrospective data of 588,622 pregnancies in Israel for which comprehensive electronic health records were available. Our models predict GDM with high accuracy even at pregnancy initiation (area under the receiver operating curve (auROC) = 0.85), substantially outperforming a baseline risk score (auROC = 0.68). We validated our results on both a future validation set and a geographical validation set from the most populated city in Israel, Jerusalem, thereby emulating real-world performance. Interrogating our model, we uncovered previously unreported risk factors, including results of previous pregnancy glucose challenge tests. Finally, we devised a simpler model based on just nine questions that a patient could answer, with only a modest reduction in accuracy (auROC = 0.80). Overall, our models may allow early-stage intervention in high-risk women, as well as a cost-effective screening approach that could avoid the need for glucose tolerance tests by identifying low-risk women. Future prospective studies and studies on additional populations are needed to assess the real-world clinical utility of the model.

关键词: 暂无
翻译标题与摘要 下载文献
影响因子:4.34
发表时间:2020-01-27
DOI:10.1128/AAC.01777-19
作者列表:["Lowes DJ","Hevener KE","Peters BM"]

METHODS::Repurposing of currently approved medications is an attractive option for the development of novel treatment strategies against physiological and infectious diseases. The antidiabetic sulfonylurea glyburide has demonstrated off-target capacity to inhibit activation of the NLRP3 inflammasome in a variety of disease models, including vaginal candidiasis, caused primarily by the fungal pathogen Candida albicans Therefore, we sought to determine which of the currently approved sulfonylurea drugs prevent the release of interleukin 1β (IL-1β), a major inflammasome effector, during C. albicans challenge of the human macrophage-like THP1 cell line. Findings revealed that the second-generation antidiabetics (glyburide, glisoxepide, gliquidone, and glimepiride), which exhibit greater antidiabetic efficacy than prior iterations, demonstrated anti-inflammatory effects with various degrees of potency as determined by calculation of 50% inhibitory concentrations (IC50s). These same compounds were also effective in reducing IL-1β release during noninfectious inflammasome activation (e.g., induced by lipopolysaccharide [LPS] plus ATP), suggesting that their anti-inflammatory activity is not specific to C. albicans challenge. Moreover, treatment with sulfonylurea drugs did not impact C. albicans growth and filamentation or THP1 viability. Finally, the use of ECE1 and Candidalysin deletion mutants, along with isogenic NLRP3-/- cells, demonstrated that both Candidalysin and NLRP3 are required for IL-1β secretion, further confirming that sulfonylureas suppress inflammasome signaling. Moreover, challenge of THP1 cells with synthetic Candidalysin peptide demonstrated that this toxin is sufficient to activate the inflammasome. Treatment with the experimental inflammasome inhibitor MCC950 led to similar blockade of IL-1β release, suggesting that Candidalysin-mediated inflammasome activation can be inhibited independently of potassium efflux. Together, these results demonstrate that the second-generation antidiabetic sulfonylureas retain anti-inflammatory activity and may be considered for repurposing against immunopathological diseases, including vaginal candidiasis.

方向

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: