扫码登录小狗阅读
Differentiation of suprasellar meningiomas from non-functioning pituitary macroadenomas by 18F-FDG and 13N-Ammonia PET/CT.
18F-FDG 和 13n 氨 PET/CT 鉴别鞍上脑膜瘤与非功能性垂体大腺瘤。
- 影响因子:3.29
- DOI:10.1186/s12885-020-06852-y
- 作者列表:"Ding L","Zhang F","He Q","Li Z","Shi X","Li R","Zhang X
- 发表时间:2020-06-17
Abstract
BACKGROUND:Differentiation of suprasellar meningiomas (SSMs) from non-functioning pituitary macroadenomas (NFPMAs) is useful for clinical management. We investigated the utility of 13N-ammonia combined with 18F-FDG positron emission tomography (PET)/computed tomography (CT) in distinguishing SSMs from NFPMAs retrospectively. METHODS:Fourteen NFPMA patients and eleven SSM patients with histopathologic diagnosis were included in this study. Every patient underwent both 18F-FDG and 13N-ammonia PET/CT scans. The tumor to gray matter (T/G) ratios were calculated for the evaluation of tumor uptake. RESULTS:The uptake of 18F-FDG was higher in NFPMAs than SSMs, whereas the uptake of 13N-ammonia was obviously lower in NFPMAs than SSMs. The differences of 18F-FDG and 13N-ammonia uptake between the two groups were significant respectively (0.92[0.46] vs 0.59[0.29], P < 0.05, 18F-FDG; 1.58 ± 0.56 vs 2.80 ± 1.45, P < 0.05, 13N-ammonia). Tumor classification demonstrated a high overall accuracy of 96.0% for differential diagnosis. When the two traces were combined, only 1 SSM was misclassified into the NFPMA group. CONCLUSION:SSMs and NFPMAs have different metabolic characteristics on 18F-FDG and 13N-ammonia PET images. The combination of these two tracers can effectively distinguish SSMs from NFPMAs.
摘要
背景: 鞍上脑膜瘤 (SSMs) 与非功能性垂体大腺瘤 (NFPMAs) 的鉴别有助于临床治疗。我们回顾性研究了 13n-氨联合 18F-FDG 正电子发射断层扫描 (PET)/计算机断层扫描 (CT) 在区分 SSMs 和 NFPMAs 中的效用。 方法: 14 例 NFPMA 患者和 11 例病理诊断为 SSM 的患者纳入本研究。每例患者均行 18F-FDG 和 13n-氨 PET/ct扫描。计算肿瘤与灰质 (T/G) 比值,评价肿瘤摄取。 结果: NFPMAs 对 18F-FDG 的摄取高于 SSMs,而 NFPMAs 对 13n-氨的摄取明显低于 SSMs。两组 18F-FDG 和 13n-氨摄取差异有显著性 (0.92[0.46] vs 0.59[0.29],p <0.05,18F-FDG; 1.58 ± 0.56 vs 2.80 ± 1.45,p <0.05,13n-氨)。肿瘤分类显示鉴别诊断疾病的总体准确率高达 96.0%。当两种痕迹合并时,只有 1 种 SSM 被错误地归类到 NFPMA 组中。 结论: SSMs 和 NFPMAs 在 18F-FDG 和 13n-氨 PET 图像上具有不同的代谢特征。这两种示踪剂的组合可以有效地区分 SSMs 和 NFPMAs。
小狗阅读
帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。
METHODS:PURPOSE:To generate a preclinical model of isocitrate dehydrogenase (IDH) mutant gliomas from glioma patients and design a MRS method to test the compatibility of 2-hydroxyglutarate (2HG) production between the preclinical model and patients. METHODS:Five patient-derived xenograft (PDX) mice were generated from two glioma patients with IDH1 R132H mutation. A PRESS sequence was tailored at 9.4 T, with computer simulation and phantom analyses, for improving 2HG detection in mice. 2HG and other metabolites in the PDX mice were measured using the optimized MRS at 9.4 T and compared with 3 T MRS measurements of the metabolites in the parental-tumor patients. Spectral fitting was performed with LCModel using in-house basis spectra. Metabolite levels were quantified with reference to water. RESULTS:The PRESS TE was optimized to be 96 ms, at which the 2HG 2.25 ppm signal was narrow and inverted, thereby leading to unequivocal separation of the 2HG resonance from adjacent signals from other metabolites. The optimized MRS provided precise detection of 2HG in mice compared to short-TE MRS at 9.4 T. The 2HG estimates in PDX mice were in excellent agreement with the 2HG measurements in the patients. CONCLUSION:The similarity of 2HG production between PDX models and parental-tumor patients indicates that PDX tumors retain the parental IDH metabolic fingerprint and can serve as a preclinical model for improving our understanding of the IDH-mutation associated metabolic reprogramming.
METHODS:BACKGROUND:Gliomas consist of a heterogeneous group of tumors. This study aimed to report the incidences of O6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, 1p19q co-deletion, isocitrate dehydrogenase (IDH) gene mutations, and inactivating mutations of alpha-thalassemia/mental retardation syndrome X-linked (ATRX) in high-grade gliomas in an ethnically diverse population. METHODS:Records of patients who underwent surgery for high-grade gliomas from January 2013 to March 2017 at our institution were obtained. The patients' age, gender, ethnicity, Karnofsky Performance Scale (KPS) score, ability to perform activities of daily living (ADLs), tumor location and biomarkers status were recorded. Data were analyzed using chi-square and Mann-Whitney U tests, Kaplan-Meier estimates and log-rank test. RESULTS:181 patients were selected (56 with grade III gliomas, 125 with grade IV gliomas). In the grade III group, 55% had MGMT promoter methylation, 41% had 1p19q co-deletion, 35% had IDH1 mutation and none had ATRX loss. In the grade IV group, 30% had MGMT promoter methylation, 2% had 1p19q co-deletion, 15% had IDH1 mutation and 8% had ATRX loss. After adjusting for effects of age, surgery and pre-operative ADL statuses, only MGMT promoter methylation was found to be significantly associated with longer overall survival time in grade III (p = 0.024) and IV patients (p = 0.006). CONCLUSIONS:The incidences of MGMT promoter methylation and IDH1 mutation were found to be comparable to globally reported rates, but those of 1p19q co-deletion and ATRX loss seemed to be lower in our cohort. MGMT promoter methylation was associated with increased overall survival in our cohort and might serve as favorable prognostic factor.
METHODS:BACKGROUND:Glioblastoma multiforme is a CNS cancer characterized by diffuse infiltrative growth, aggressive clinical behavior and very poor prognosis. The state-of-art clinical approach to this disease consists of surgical resection followed by radiotherapy plus concurrent and adjuvant chemotherapy with temozolomide. Tumor recurrence occurs in virtually all cases, therefore, despite any treatment, the median survival is very low (14.6 months), which makes the approach to these patients a challenging clinical issue. MAIN BODY:The escalating costs and times required for new medications to reach the bedside make repurposing or repositioning of old drugs, when scientific bases allow their use in other pathologies, an appealing strategy. Here, we analyze a number of literature data concerning the antipsychotic chlorpromazine, the founder of the phenothiazines class of drugs, a medication widely used in the clinics for approximately 60 years. The drug exerts its effects on psychiatric patients by interfering with the dopamine receptor D2, although more recent pharmacodynamics studies ascribe chlorpromazine a series of biological effects on cancer cells, all converging in hindering also glioblastoma survival capabilities. SHORT CONCLUSIONS:On these bases, and assisted by the information on the well-established chlorpromazine toxicity and dosage in humans, we designed a Phase II clinical trial involving the combination of chlorpromazine with the standard treatment, temozolomide, in the adjuvant phase of the therapeutic protocol. Patients displaying hypo-methylation of the MGMT gene, and thus intrinsically resistant to temozolomide, will be enrolled. The endpoints of this study are the analysis of toxicity and clinical activity, as evaluated in terms of Progression-Free Survival, of the association of chlorpromazine with the first-line treatment for this very serious form of cancer.