High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2.


  • 影响因子:4.46
  • DOI:10.3201/eid2607.200282
  • 作者列表:"Sanche S","Lin YT","Xu C","Romero-Severson E","Hengartner N","Ke R
  • 发表时间:2020-07-01

:Severe acute respiratory syndrome coronavirus 2 is the causative agent of the ongoing coronavirus disease pandemic. Initial estimates of the early dynamics of the outbreak in Wuhan, China, suggested a doubling time of the number of infected persons of 6-7 days and a basic reproductive number (R0) of 2.2-2.7. We collected extensive individual case reports across China and estimated key epidemiologic parameters, including the incubation period (4.2 days). We then designed 2 mathematical modeling approaches to infer the outbreak dynamics in Wuhan by using high-resolution domestic travel and infection data. Results show that the doubling time early in the epidemic in Wuhan was 2.3-3.3 days. Assuming a serial interval of 6-9 days, we calculated a median R0 value of 5.7 (95% CI 3.8-8.9). We further show that active surveillance, contact tracing, quarantine, and early strong social distancing efforts are needed to stop transmission of the virus.


新型冠状病毒是冠状病毒疾病大流行的病原体。对中国武汉爆发的早期动态的初步估计表明,感染人数的倍增时间为 6-7 天,基本生殖数量 (基本传染数) 2.2-2.7。我们在中国收集了广泛的个案报告,估计了关键流行病学参数,包括潜伏期 (4.2 天)。然后我们设计了 2 种数学建模方法,利用高分辨率的国内旅行和感染数据来推断武汉的暴发动态。结果表明,武汉市流行初期倍增时间为 2.3 ~ 3.3 天。假设连续间隔 6-9 天,我们计算出中位数基本传染数值为 5.7 (95% CI 3.8-8.9)。我们进一步表明,需要积极的监测、接触者追踪、检疫和早期强有力的社会疏远努力来阻止病毒的传播。



作者列表:["Lim J","Jeon S","Shin HY","Kim MJ","Seong YM","Lee WJ","Choe KW","Kang YM","Lee B","Park SJ"]

METHODS::Since mid-December of 2019, coronavirus disease 2019 (COVID-19) infection has been spreading from Wuhan, China. The confirmed COVID-19 patients in South Korea are those who came from or visited China. As secondary transmissions have occurred and the speed of transmission is accelerating, there are rising concerns about community infections. The 54-year old male is the third patient diagnosed with COVID-19 infection in Korea. He is a worker for a clothing business and had mild respiratory symptoms and intermittent fever in the beginning of hospitalization, and pneumonia symptoms on chest computerized tomography scan on day 6 of admission. This patient caused one case of secondary transmission and three cases of tertiary transmission. Hereby, we report the clinical findings of the index patient who was the first to cause tertiary transmission outside China. Interestingly, after lopinavir/ritonavir (Kaletra, AbbVie) was administered, β-coronavirus viral loads significantly decreased and no or little coronavirus titers were observed.

作者列表:["Zhang W","Du RH","Li B","Zheng XS","Yang XL","Hu B","Wang YY","Xiao GF","Yan B","Shi ZL","Zhou P"]

METHODS::In December 2019, a novel coronavirus (2019-nCoV) caused an outbreak in Wuhan, China, and soon spread to other parts of the world. It was believed that 2019-nCoV was transmitted through respiratory tract and then induced pneumonia, thus molecular diagnosis based on oral swabs was used for confirmation of this disease. Likewise, patient will be released upon two times of negative detection from oral swabs. However, many coronaviruses can also be transmitted through oral-fecal route by infecting intestines. Whether 2019-nCoV infected patients also carry virus in other organs like intestine need to be tested. We conducted investigation on patients in a local hospital who were infected with this virus. We found the presence of 2019-nCoV in anal swabs and blood as well, and more anal swab positives than oral swab positives in a later stage of infection, suggesting shedding and thereby transmitted through oral-fecal route. We also showed serology test can improve detection positive rate thus should be used in future epidemiology. Our report provides a cautionary warning that 2019-nCoV may be shed through multiple routes.

翻译标题与摘要 下载文献
作者列表:["Cheng ZJ","Shan J"]

METHODS::There is a current worldwide outbreak of a new type of coronavirus (2019-nCoV), which originated from Wuhan in China and has now spread to 17 other countries. Governments are under increased pressure to stop the outbreak spiraling into a global health emergency. At this stage, preparedness, transparency, and sharing of information are crucial to risk assessments and beginning outbreak control activities. This information should include reports from outbreak sites and from laboratories supporting the investigation. This paper aggregates and consolidates the virology, epidemiology, clinical management strategies from both English and Chinese literature, official news channels, and other official government documents. In addition, by fitting the number of infections with a single-term exponential model, we report that the infection is spreading at an exponential rate, with a doubling period of 1.8 days.