小狗阅读会员会员
医学顶刊SCI精读工具

扫码登录小狗阅读

阅读SCI医学文献
Document
订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}

    按需关注领域/方向,精准获取前沿热点

  • {{item.title}}

    {{item.follow}}人关注

  • {{item.subscribe_count}}人订阅

    IF:{{item.impact_factor}}

    {{item.title}}

Pandemic influenza A(H1N1pdm09) vaccine induced high levels of influenza-specific IgG and IgM antibodies as analyzed by enzyme immunoassay and dual-mode multiplex microarray immunoassay methods.

通过酶免疫测定和双模式多重微阵列免疫测定方法分析,大流行甲型流感 (H1N1pdm09) 疫苗诱导高水平的流感特异性 IgG 和 IgM 抗体。

  • 影响因子:3.18
  • DOI:10.1016/j.vaccine.2020.01.022
  • 作者列表:"Kazakova A","Kakkola L","Ziegler T","Syrjänen R","Päkkilä H","Waris M","Soukka T","Julkunen I
  • 发表时间:2020-01-24
Abstract

:Influenza A viruses continue to circulate throughout the world as yearly epidemics or occasional pandemics. Influenza infections can be prevented by seasonal multivalent or monovalent pandemic vaccines. In the present study, we describe a novel multiplex microarray immunoassay (MAIA) for simultaneous measurement of virus-specific IgG and IgM antibodies using Pandemrix-vaccinated adult sera collected at day 0 and 28 and 180 days after vaccination as the study material. MAIA showed excellent correlation with a conventional enzyme immunoassay (EIA) in both IgG and IgM anti-influenza A antibodies and good correlation with hemagglutination inhibition (HI) test. Pandemrix vaccine induced 5-30 fold increases in anti-H1N1pdm09 influenza antibodies as measured by HI, EIA or MAIA. A clear increase in virus-specific IgG antibodies was found in 93-97% of vaccinees by MAIA and EIA. Virus-specific IgM antibodies were found in 90-92% of vaccinees by MAIA and EIA, respectively and IgM antibodies persisted for up to 6 months after vaccination in 55-62% of the vaccinees. Pandemic influenza vaccine induced strong anti-influenza A IgG and IgM responses that persisted several months after vaccination. MAIA was demonstrated to be an excellent method for simultaneous measurement of antiviral IgG and IgM antibodies against multiple virus antigens. Thus the method is well suitable for large scale epidemiological and vaccine immunity studies.

摘要

: 甲型流感病毒继续作为年度流行病或偶尔的大流行在世界各地传播。流感感染可以通过季节性多价或单价大流行疫苗预防。在本研究中,我们描述了一种新型的多重微阵列免疫分析 (MAIA) 使用接种后第 0 天和第 28 天和 180 天收集的 Pandemrix 接种的成人血清作为研究材料,同时测量病毒特异性 IgG 和 IgM 抗体。MAIA 与常规酶免 (EIA) 的 IgG 和 IgM 抗甲型流感抗体均显示出极好的相关性,与血凝抑制 (HI) 试验显示出良好的相关性。通过 HI 、 EIA 或 MAIA 检测,Pandemrix 疫苗诱导 anti-H1N1pdm09 流感抗体增加 5-30 倍。MAIA 和 EIA 在 93-97% 的接种者中发现病毒特异性 IgG 抗体明显增加。MAIA 和 EIA 分别在 90-92% 的接种者中发现病毒特异性 IgM 抗体,55-62% 的接种者接种后 IgM 抗体持续时间长达 6 个月。大流行性流感疫苗诱导强烈的抗流感 A IgG 和 IgM 反应,在接种疫苗后数月持续存在。MAIA 被证明是同时检测针对多种病毒抗原的抗病毒 IgG 和 IgM 抗体的优良方法。该方法适用于大规模流行病学和疫苗免疫研究。

阅读人数:0人
下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:5.31
发表时间:2020-01-19
DOI:10.1093/cid/ciaa050
作者列表:["Baum U","Kulathinal S","Auranen K","Nohynek H"]

METHODS:BACKGROUND:From 2015/16 through 2017/18, injectable, trivalent inactivated influenza vaccines (IIV3) and a nasal spray, tetravalent live-attenuated influenza vaccine (LAIV4) were used in parallel in Finland. To understand how well vaccination with each vaccine type protected children against influenza under real-life conditions, vaccine effectiveness in two-year-olds was estimated for all three seasons. METHODS:Each season, a nationwide register-based cohort study was conducted. The study population comprised 60,088 children in 2015/16, 60,860 children in 2016/17 and 60,345 children in 2017/18. Laboratory-confirmed influenza was the study outcome. Seasonal influenza vaccination with either LAIV4 or IIV3 was the time-dependent exposure of interest. Vaccine effectiveness was defined as 1 minus the hazard ratio comparing vaccinated with unvaccinated children. RESULTS:From 2015/16 through 2017/18, the effectiveness of LAIV4 against influenza of any virus type was estimated at 54.2% (95% confidence interval, 32.2%-69.0%), 20.3% (-12.7% to 43.6%) and 30.5% (10.9%-45.9%); the corresponding effectiveness of IIV3 was 77.2% (48.9%-89.8%), 24.5% (-29.8% to 56.1%) and -20.1% (-61.5% to 10.7%). Neither of the influenza vaccines clearly excelled in protecting children. The LAIV4 effectiveness against type B was greater than against type A and greater than the IIV3 effectiveness against type B. CONCLUSIONS:To understand how influenza vaccines could be improved, vaccine effectiveness must be analyzed by vaccine and virus type. Effectiveness estimates expressing also overall protection levels are needed to guide individual and programmatic decision-making processes. Supported by this analysis, the vaccination program in Finland now recommends LAIV4 and injectable, tetravalent inactivated influenza vaccines replacing IIV3.

翻译标题与摘要 下载文献
影响因子:1.36
发表时间:2020-01-20
DOI:10.1111/1348-0421.12775
作者列表:["Ainai A","van Riet E","Ito R","Ikeda K","Senchi K","Suzuki T","Tamura SI","Asanuma H","Odagiri T","Tashiro M","Kurata T","Multihartina P","Setiawaty V","Andriana Pangesti KN","Hasegawa H"]

METHODS::Intranasally administered influenza vaccines could be more effective than injected vaccines, since intranasal vaccination can induce virus-specific IgA antibodies in the upper respiratory tract, which is the initial site of infection. In the current study, immune responses elicited by an intranasal inactivated H5 influenza vaccine were evaluated in healthy H5 influenza virus-naive individuals. Three doses of intranasal inactivated whole-virion H5 influenza vaccine induced strong neutralizing nasal IgA and serum IgG antibodies. In addition, a mucoadhesive excipient, carboxy-vinyl polymer (CVP), had a notable impact on the induction of nasal IgA antibody responses but not serum IgG antibody responses. The nasal hemagglutinin (HA)-specific IgA antibody responses clearly correlated with mucosal neutralizing antibody responses, indicating that measurement of nasal HA-specific IgA titers could be used as a surrogate for the mucosal antibody response. Furthermore, increased numbers of plasma cells and vaccine antigen-specific helper T (Th) cells in the peripheral blood were observed after vaccination, suggesting that peripheral blood biomarkers may also be used to evaluate the intranasal vaccine-induced immune response. However, peripheral blood immune cell responses correlated with neutralizing antibody titers in serum samples but not in nasal wash samples. Thus, analysis of the peripheral blood immune response could be a surrogate for the systemic immune response to intranasal vaccination but not for the mucosal immune response. The current study suggests the clinical potential of intranasal inactivated vaccines against H5 influenza viruses and highlights the need to develop novel means to evaluate intranasal vaccine-induced mucosal immune responses. This article is protected by copyright. All rights reserved.

影响因子:6.53
发表时间:2020-01-21
DOI:10.1016/S1473-3099(19)30584-5
作者列表:["Liebowitz D","Gottlieb K","Kolhatkar NS","Garg SJ","Asher JM","Nazareno J","Kim K","McIIwain DR","Tucker SN"]

METHODS:BACKGROUND:Influenza is an important public health problem and existing vaccines are not completely protective. New vaccines that protect by alternative mechanisms are needed to improve efficacy of influenza vaccines. In 2015, we did a phase 1 trial of an oral influenza vaccine, VXA-A1.1. A favourable safety profile and robust immunogenicity results in that trial supported progression of the vaccine to the current phase 2 trial. The aim of this study was to evaluate efficacy of the vaccine in a human influenza challenge model. METHODS:We did a single-site, placebo-controlled and active-controlled, phase 2 study at WCCT Global, Costa Mesa, CA, USA. Eligible individuals had an initial A/California/H1N1 haemagglutination inhibition titre of less than 20 and were aged 18-49 years and in good health. Individuals were randomly assigned (2:2:1) to receive a single immunisation of either 1011 infectious units of VXA-A1.1 (a monovalent tablet vaccine) orally, a full human dose of quadrivalent inactivated influenza vaccine (IIV) via intramuscular injection, or matched placebo. Randomisation was done by computer-generated assignments with block size of five. An unmasked pharmacist provided the appropriate vaccines and placebos to the administrating nurse. Individuals receiving the treatments, investigators, and staff were all masked to group assignments. 90 days after immunisation, individuals without clinically significant symptoms or signs of influenza, an oral temperature of higher than 37·9°C, a positive result for respiratory viral shedding on a Biofire test, and any investigator-assessed contraindications were challenged intranasally with 0·5 mL wild-type A/CA/like(H1N1)pdm09 influenza virus. The primary outcomes were safety, which was assessed in all immunised participants through 365 days, and influenza-positive illness after viral challenge, which was assessed in individuals that received the viral challenge and the required number of assessments post viral challenge. This trial is registered with ClinicalTrials.gov, number NCT02918006. RESULTS:Between Aug 31, 2016, and Jan 23, 2017, 374 individuals were assessed for eligibility, of whom 179 were randomly assigned to receive either VXA-A1.1 (n=71 [one individual did not provide a diary card, thus the solicited events were assessed in 70 individuals]), IIV (n=72), or placebo (n=36). Between Dec 2, 2016, and April 26, 2017, 143 eligible individuals (58 in the VXA-A1.1 group, 54 in the IIV group, and 31 in the placebo group) were challenged with influenza virus. VXA-A1.1 was well tolerated with no serious or medically significant adverse events. The most prevalent solicited adverse events for each of the treatment groups after immunisation were headache in the VXA-A1.1 (in five [7%] of 70 participants) and placebo (in seven [19%] of 36 participants) groups and tenderness at injection site in the IIV group (in 19 [26%] of 72 participants) Influenza-positive illness after challenge was detected in 17 (29%) of 58 individuals in the VXA-A1.1 group, 19 (35%) of 54 in the IIV group, and 15 (48%) of 31 in the placebo group. INTERPRETATION:Orally administered VXA-A1.1 was well tolerated and generated protective immunity against virus shedding, similar to a licensed intramuscular IIV. These results represent a major step forward in developing a safe and effective oral influenza vaccine. FUNDING:Department of Health and Human Services, Office of the Assistant Secretary for Preparedness and Response, and Biomedical Advanced Research and Development Authority.

关键词: 暂无
翻译标题与摘要 下载文献
方向

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

科研福利

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: