小狗阅读会员会员
有解析的医学SCI阅读工具

扫码登录小狗阅读

阅读SCI医学文献

Transcriptomic profiling identifies a critical role of Nrf2 in regulating the inflammatory response to fly ash particles in mouse lung.

转录组学分析确定了 Nrf2 在调节小鼠肺对飞灰颗粒的炎症反应中的关键作用。

  • 影响因子:4.88
  • DOI:10.1016/j.ecoenv.2019.110132
  • 作者列表:"Zhang J","Cui H","Namani A","Yao J","Deng H","Tang X","Wang XJ
  • 发表时间:2020-03-01
Abstract

:Exposure to combustion-derived nanoparticles is recognized as a major health hazard, but the molecular responses are still insufficiently described. The transcription factor erythroid 2-related factor 2 (Nrf2, also known as NFE2L2) is a master regulator of the pulmonary defense system against insults by particulate matter. However, its downstream molecular processes are not fully characterized. In the current study, BALB/c wild-type (WT) and Nrf2-/- mice were exposed by intranasal administration to fly ash particles (F3-S; 20 mg/kg BW), which were collected from a municipal waste incinerator in China, for three consecutive days. Using a comparative transcriptomics approach, the pulmonary global gene expression profiles to F3-S exposure were characterized for both genotypes. The preponderance of the differentially-expressed genes (DEGs) in WT mice induced by the fly ash particles, was related to inflammation. Functional enrichment and molecular pathway mapping of the DEGs specific to Nrf2-/- mice exposed to the particles revealed that all of the top 10 perturbed molecular pathways were associated with the inflammatory response. Our study identified a transcriptional signature related to the initial pulmonary injury in mouse upon fly ash exposure, and suggests an anti-inflammatory role of Nrf2 in protecting the lung against such exposure.

摘要

: 暴露于燃烧衍生的纳米颗粒被认为是一种主要的健康危害,但是分子反应仍然没有得到充分的描述。转录因子红系 2 相关因子 2 (Nrf2,也称为 NFE2L2) 是肺防御系统对抗颗粒物损伤的主要调控因子。然而,其下游分子过程尚未完全表征。在目前的研究中,BALB/c 野生型 (WT) 和 Nrf2-/-小鼠通过鼻内给药暴露于飞灰颗粒 (F3-S; 20 mg/kg BW), 这是连续三天从中国的城市垃圾焚化炉收集的。使用比较转录组学方法,对两种基因型的肺整体基因表达谱进行 F3-S 分析。粉煤灰颗粒诱导的 WT 小鼠差异表达基因 (DEGs) 的优势与炎症有关。暴露于颗粒的 Nrf2-/-小鼠特异性 DEGs 的功能富集和分子通路定位揭示了所有前 10 条扰动的分子通路都与炎症反应相关。我们的研究确定了与飞灰暴露后小鼠初始肺损伤相关的转录信号,并提示 Nrf2 在保护肺免受这种暴露中的抗炎作用。

阅读人数:2人
下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:6.12
发表时间:2020-01-01
DOI:10.1111/bph.14861
作者列表:["De Cunto G","Brancaleone V","Riemma MA","Cerqua I","Vellecco V","Spaziano G","Cavarra E","Bartalesi B","D'Agostino B","Lungarella G","Cirino G","Lucattelli M","Roviezzo F"]

METHODS:BACKGROUND AND PURPOSE:A critical role for sphingosine kinase/sphingosine-1-phosphate (S1P) pathway in the control of airway function has been demonstrated in respiratory diseases. Here, we address S1P contribution in a mouse model of mild chronic obstructive pulmonary disease (COPD). EXPERIMENTAL APPROACH:C57BL/6J mice have been exposed to room air or cigarette smoke up to 11 months and killed at different time points. Functional and molecular studies have been performed. KEY RESULTS:Cigarette smoke caused emphysematous changes throughout the lung parenchyma coupled to a progressive collagen deposition in both peribronchiolar and peribronchial areas. The high and low airways showed an increased reactivity to cholinergic stimulation and α-smooth muscle actin overexpression. Similarly, an increase in airway reactivity and lung resistances following S1P challenge occurred in smoking mice. A high expression of S1P, Sph-K2 , and S1P receptors (S1P2 and S1P3 ) has been detected in the lung of smoking mice. Sphingosine kinases inhibition reversed the increased cholinergic response in airways of smoking mice. CONCLUSIONS AND IMPLICATIONS:S1P signalling up-regulation follows the disease progression in smoking mice and is involved in the development of airway hyperresponsiveness. Our study defines a therapeutic potential for S1P inhibitors in management of airways hyperresponsiveness associated to emphysema in smokers with both asthma and COPD.

关键词: 暂无
翻译标题与摘要 下载文献
影响因子:3.94
发表时间:2020-01-15
DOI:10.1016/j.taap.2019.114847
作者列表:["Bernstein DM","Toth B","Rogers RA","Kling DE","Kunzendorf P","Phillips JI","Ernst H"]

METHODS::The interim results from this 90-day multi-dose, inhalation toxicology study with life-time post-exposure observation has shown an important fundamental difference in persistence and pathological response in the lung between brake dust derived from brake-pads manufactured with chrysotile, TiO2 or chrysotile alone in comparison to the amphiboles, crocidolite and amosite asbestos. In the brake dust exposure groups no significant pathological response was observed at any time. Slight macrophage accumulation of particles was noted. Wagner-scores, were from 1 to 2 (1 = air-control group) and were similar to the TiO2 group. Chrysotile being biodegradable, shows a weakening of its matrix and breaking into short fibers & particles that can be cleared by alveolar macrophages and continued dissolution. In the chrysotile exposure groups, particle laden macrophage accumulation was noted leading to a slight interstitial inflammatory response (Wagner-score 1-3). There was no peribronchiolar inflammation and occasional very slight interstitial fibrosis. The histopathology and the confocal analyses clearly differentiate the pathological response from amphibole asbestos, crocidolite and amosite, compared to that from the brake dust and chrysotile. Both crocidolite and amosite induced persistent inflammation, microgranulomas, and fibrosis (Wagner-scores 4), which persisted through the post exposure period. The confocal microscopy of the lung and snap-frozen chestwalls quantified the extensive inflammatory response and collagen development in the lung and on the visceral and parietal surfaces. The interim results reported here, provide a clear basis for differentiating the effects from brake dust exposure from those following amphibole asbestos exposure. The subsequent results through life-time post-exposure will follow.

关键词: 暂无
翻译标题与摘要 下载文献
影响因子:4.04
发表时间:2020-01-10
DOI:10.1042/BST20191010
作者列表:["Zaragosi LE","Deprez M","Barbry P"]

METHODS::The respiratory tract is lined by a pseudo-stratified epithelium from the nose to terminal bronchioles. This first line of defense of the lung against external stress includes five main cell types: basal, suprabasal, club, goblet and multiciliated cells, as well as rare cells such as ionocytes, neuroendocrine and tuft/brush cells. At homeostasis, this epithelium self-renews at low rate but is able of fast regeneration upon damage. Airway epithelial cell lineages during regeneration have been investigated in the mouse by genetic labeling, mainly after injuring the epithelium with noxious agents. From these approaches, basal cells have been identified as progenitors of club, goblet and multiciliated cells, but also of ionocytes and neuroendocrine cells. Single-cell RNA sequencing, coupled to lineage inference algorithms, has independently allowed the establishment of comprehensive pictures of cell lineage relationships in both mouse and human. In line with genetic tracing experiments in mouse trachea, studies using single-cell RNA sequencing (RNAseq) have shown that basal cells first differentiate into club cells, which in turn mature into goblet cells or differentiate into multiciliated cells. In the human airway epithelium, single-cell RNAseq has identified novel intermediate populations such as deuterosomal cells, 'hybrid' mucous-multiciliated cells and progenitors of rare cells. Novel differentiation dynamics, such as a transition from goblet to multiciliated cells have also been discovered. The future of cell lineage relationships in the respiratory tract now resides in the combination of genetic labeling approaches with single-cell RNAseq to establish, in a definitive manner, the hallmarks of cellular lineages in normal and pathological situations.

翻译标题与摘要 下载文献
方向

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

科研福利

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: