订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}


  • {{item.title}}


  • {{item.subscribe_count}}人订阅



Fibroblast Growth Factor 21 dependent TLR4/MYD88/NF-κB signaling activation is involved in lipopolysaccharide-induced acute lung injury.

成纤维细胞生长因子 21 依赖的 TLR4/MYD88/NF-κ b 信号活化参与脂多糖诱导的急性肺损伤。

  • 影响因子:3.32
  • DOI:10.1016/j.intimp.2020.106219
  • 作者列表:"Gao J","Liu Q","Li J","Hu C","Zhao W","Ma W","Yao M","Xing L
  • 发表时间:2020-01-25

:Fibroblast Growth Factor 21 (FGF21) has been reported to reduce inflammation and apoptosis. Inflammation and apoptosis are both the essential mechanisms during development of acute lung injury. This study evaluated whether pre-treatment of FGF21 could alleviate acute lung injury. Mice were pre-treated with FGF21 prior to lipopolysaccharide (LPS) treatment. 24 h later, the lung tissues and BALF were obtained to detect H&E pathology, W/D ratio, pro-inflammatory factors (TNF-α, IL-1β and IL-6) and apoptosis. In vitro, Human BEAS-2B and THP-1 cells were overexpressed with TLR4 or MYD88 or NF-κB plasmid to detect the inflammation or apoptosis. Data showed that FGF21 was proved to be beneficial for inhibiting inflammation and apoptosis in the LPS- induced Balb/c mice or LPS induced BEAS-2B or THP-1 cells. Furthermore, the data showed that FGF21 suppressed inflammation and apoptosis via inhibition of TLR4/MYD88/NF-κB signaling pathway. Therefore, FGF21 provides a possibility for the treatment of LPS induced acute lung injury.


: 据报道,成纤维细胞生长因子 21 (FGF21) 可减轻炎症和细胞凋亡。炎症和细胞凋亡都是急性肺损伤发生发展的重要机制。本研究评估 FGF21 预处理是否能缓解急性肺损伤。在脂多糖 (LPS) 处理之前用 FGF21 预处理小鼠。24 h 后取肺组织及 BALF,检测 H & E 病理、 W/D 比值、促炎因子 (TNF-α 、 il-1 β 和 IL-6) 及细胞凋亡。在体外,用 TLR4 或 MYD88 或 NF-κ b 质粒检测人 BEAS-2B 和 THP-1 细胞的炎症或凋亡。实验结果表明,FGF21 对 LPS 诱导的 Balb/c 小鼠或 LPS 诱导的 BEAS-2B 细胞和 THP-1 细胞有抑制炎症反应和凋亡的作用。此外,数据显示 FGF21 通过抑制 TLR4/MYD88/NF-κ b 信号通路抑制炎症和凋亡。因此,FGF21 为 LPS 诱导的急性肺损伤的治疗提供了可能。



作者列表:["De Cunto G","Brancaleone V","Riemma MA","Cerqua I","Vellecco V","Spaziano G","Cavarra E","Bartalesi B","D'Agostino B","Lungarella G","Cirino G","Lucattelli M","Roviezzo F"]

METHODS:BACKGROUND AND PURPOSE:A critical role for sphingosine kinase/sphingosine-1-phosphate (S1P) pathway in the control of airway function has been demonstrated in respiratory diseases. Here, we address S1P contribution in a mouse model of mild chronic obstructive pulmonary disease (COPD). EXPERIMENTAL APPROACH:C57BL/6J mice have been exposed to room air or cigarette smoke up to 11 months and killed at different time points. Functional and molecular studies have been performed. KEY RESULTS:Cigarette smoke caused emphysematous changes throughout the lung parenchyma coupled to a progressive collagen deposition in both peribronchiolar and peribronchial areas. The high and low airways showed an increased reactivity to cholinergic stimulation and α-smooth muscle actin overexpression. Similarly, an increase in airway reactivity and lung resistances following S1P challenge occurred in smoking mice. A high expression of S1P, Sph-K2 , and S1P receptors (S1P2 and S1P3 ) has been detected in the lung of smoking mice. Sphingosine kinases inhibition reversed the increased cholinergic response in airways of smoking mice. CONCLUSIONS AND IMPLICATIONS:S1P signalling up-regulation follows the disease progression in smoking mice and is involved in the development of airway hyperresponsiveness. Our study defines a therapeutic potential for S1P inhibitors in management of airways hyperresponsiveness associated to emphysema in smokers with both asthma and COPD.

关键词: 暂无
翻译标题与摘要 下载文献
作者列表:["Bernstein DM","Toth B","Rogers RA","Kling DE","Kunzendorf P","Phillips JI","Ernst H"]

METHODS::The interim results from this 90-day multi-dose, inhalation toxicology study with life-time post-exposure observation has shown an important fundamental difference in persistence and pathological response in the lung between brake dust derived from brake-pads manufactured with chrysotile, TiO2 or chrysotile alone in comparison to the amphiboles, crocidolite and amosite asbestos. In the brake dust exposure groups no significant pathological response was observed at any time. Slight macrophage accumulation of particles was noted. Wagner-scores, were from 1 to 2 (1 = air-control group) and were similar to the TiO2 group. Chrysotile being biodegradable, shows a weakening of its matrix and breaking into short fibers & particles that can be cleared by alveolar macrophages and continued dissolution. In the chrysotile exposure groups, particle laden macrophage accumulation was noted leading to a slight interstitial inflammatory response (Wagner-score 1-3). There was no peribronchiolar inflammation and occasional very slight interstitial fibrosis. The histopathology and the confocal analyses clearly differentiate the pathological response from amphibole asbestos, crocidolite and amosite, compared to that from the brake dust and chrysotile. Both crocidolite and amosite induced persistent inflammation, microgranulomas, and fibrosis (Wagner-scores 4), which persisted through the post exposure period. The confocal microscopy of the lung and snap-frozen chestwalls quantified the extensive inflammatory response and collagen development in the lung and on the visceral and parietal surfaces. The interim results reported here, provide a clear basis for differentiating the effects from brake dust exposure from those following amphibole asbestos exposure. The subsequent results through life-time post-exposure will follow.

关键词: 暂无
翻译标题与摘要 下载文献
作者列表:["Zaragosi LE","Deprez M","Barbry P"]

METHODS::The respiratory tract is lined by a pseudo-stratified epithelium from the nose to terminal bronchioles. This first line of defense of the lung against external stress includes five main cell types: basal, suprabasal, club, goblet and multiciliated cells, as well as rare cells such as ionocytes, neuroendocrine and tuft/brush cells. At homeostasis, this epithelium self-renews at low rate but is able of fast regeneration upon damage. Airway epithelial cell lineages during regeneration have been investigated in the mouse by genetic labeling, mainly after injuring the epithelium with noxious agents. From these approaches, basal cells have been identified as progenitors of club, goblet and multiciliated cells, but also of ionocytes and neuroendocrine cells. Single-cell RNA sequencing, coupled to lineage inference algorithms, has independently allowed the establishment of comprehensive pictures of cell lineage relationships in both mouse and human. In line with genetic tracing experiments in mouse trachea, studies using single-cell RNA sequencing (RNAseq) have shown that basal cells first differentiate into club cells, which in turn mature into goblet cells or differentiate into multiciliated cells. In the human airway epithelium, single-cell RNAseq has identified novel intermediate populations such as deuterosomal cells, 'hybrid' mucous-multiciliated cells and progenitors of rare cells. Novel differentiation dynamics, such as a transition from goblet to multiciliated cells have also been discovered. The future of cell lineage relationships in the respiratory tract now resides in the combination of genetic labeling approaches with single-cell RNAseq to establish, in a definitive manner, the hallmarks of cellular lineages in normal and pathological situations.

翻译标题与摘要 下载文献