Fibroblast growth factor 10 alleviates particulate matter-induced lung injury by inhibiting the HMGB1-TLR4 pathway.

成纤维细胞生长因子 10 通过抑制肺损伤途径减轻颗粒物诱导的 HMGB1-TLR4。

  • 影响因子:5.5150
  • DOI:10.18632/aging.102676
  • 作者列表:"Liu L","Song C","Li J","Wang Q","Zhu M","Hu Y","Chen J","Chen C","Zhang JS","Dong N","Chen C
  • 发表时间:2020-01-20

:Exposure to particulate matter (PM) is associated with increased incidence of respiratory diseases. The present study aimed to investigate the roles of fibroblast growth factor 10 (FGF10) in PM-induced lung injury. Mice were intratracheally instilled with FGF10 or phosphate-buffered saline at one hour before instillation of PM for two consecutive days. In addition, the anti-inflammatory impact of FGF10 in vitro and its effect on the high-mobility group box 1 (HMGB1)-toll-like receptor 4 (TLR4) pathway was investigated. It was found that PM exposure is associated with increased inflammatory cell infiltration into the lung and increased vascular protein leakage, while FGF10 pretreatment attenuated both of these effects. FGF10 also decreased the PM-induced expression of interleukin (IL)-6, IL-8, tumor necrosis factor-α and HMGB1 in murine bronchoalveolar lavage fluid and in the supernatants of human bronchial epithelial cells exposed to PM. FGF10 exerted anti-inflammatory and cytoprotective effects by inhibiting the HMGB1-TLR4 pathway. These results indicate that FGF10 may have therapeutic values for PM-induced lung injury.


: 颗粒物 (PM) 暴露与呼吸系统疾病发病率增加有关。本研究旨在探讨成纤维细胞生长因子 10 (FGF10) 在 PM 诱导的肺损伤中的作用。小鼠在滴注 PM 前 1 小时气管内滴注 FGF10 或磷酸盐缓冲盐水,连续两天。此外,研究了 FGF10 的体外抗炎作用及其对高迁移率族蛋白 b1 (HMGB1)-toll 样受体 4 (TLR4) 通路的影响。发现 PM 暴露与肺内炎症细胞浸润增加和血管蛋白渗漏增加有关,而 FGF10 预处理减弱了这两种作用。FGF10 还降低 PM 诱导的白细胞介素 (IL)-6 、 IL-8 、小鼠支气管肺泡灌洗液和 PM 暴露的人支气管上皮细胞上清液中的肿瘤坏死因子-α 和 HMGB1。FGF10 通过抑制 HMGB1-TLR4 途径发挥抗炎和细胞保护作用。这些结果表明 FGF10 可能对 PM 诱导的肺损伤有治疗价值。



作者列表:["De Cunto G","Brancaleone V","Riemma MA","Cerqua I","Vellecco V","Spaziano G","Cavarra E","Bartalesi B","D'Agostino B","Lungarella G","Cirino G","Lucattelli M","Roviezzo F"]

METHODS:BACKGROUND AND PURPOSE:A critical role for sphingosine kinase/sphingosine-1-phosphate (S1P) pathway in the control of airway function has been demonstrated in respiratory diseases. Here, we address S1P contribution in a mouse model of mild chronic obstructive pulmonary disease (COPD). EXPERIMENTAL APPROACH:C57BL/6J mice have been exposed to room air or cigarette smoke up to 11 months and killed at different time points. Functional and molecular studies have been performed. KEY RESULTS:Cigarette smoke caused emphysematous changes throughout the lung parenchyma coupled to a progressive collagen deposition in both peribronchiolar and peribronchial areas. The high and low airways showed an increased reactivity to cholinergic stimulation and α-smooth muscle actin overexpression. Similarly, an increase in airway reactivity and lung resistances following S1P challenge occurred in smoking mice. A high expression of S1P, Sph-K2 , and S1P receptors (S1P2 and S1P3 ) has been detected in the lung of smoking mice. Sphingosine kinases inhibition reversed the increased cholinergic response in airways of smoking mice. CONCLUSIONS AND IMPLICATIONS:S1P signalling up-regulation follows the disease progression in smoking mice and is involved in the development of airway hyperresponsiveness. Our study defines a therapeutic potential for S1P inhibitors in management of airways hyperresponsiveness associated to emphysema in smokers with both asthma and COPD.

关键词: 暂无
翻译标题与摘要 下载文献
作者列表:["Bernstein DM","Toth B","Rogers RA","Kling DE","Kunzendorf P","Phillips JI","Ernst H"]

METHODS::The interim results from this 90-day multi-dose, inhalation toxicology study with life-time post-exposure observation has shown an important fundamental difference in persistence and pathological response in the lung between brake dust derived from brake-pads manufactured with chrysotile, TiO2 or chrysotile alone in comparison to the amphiboles, crocidolite and amosite asbestos. In the brake dust exposure groups no significant pathological response was observed at any time. Slight macrophage accumulation of particles was noted. Wagner-scores, were from 1 to 2 (1 = air-control group) and were similar to the TiO2 group. Chrysotile being biodegradable, shows a weakening of its matrix and breaking into short fibers & particles that can be cleared by alveolar macrophages and continued dissolution. In the chrysotile exposure groups, particle laden macrophage accumulation was noted leading to a slight interstitial inflammatory response (Wagner-score 1-3). There was no peribronchiolar inflammation and occasional very slight interstitial fibrosis. The histopathology and the confocal analyses clearly differentiate the pathological response from amphibole asbestos, crocidolite and amosite, compared to that from the brake dust and chrysotile. Both crocidolite and amosite induced persistent inflammation, microgranulomas, and fibrosis (Wagner-scores 4), which persisted through the post exposure period. The confocal microscopy of the lung and snap-frozen chestwalls quantified the extensive inflammatory response and collagen development in the lung and on the visceral and parietal surfaces. The interim results reported here, provide a clear basis for differentiating the effects from brake dust exposure from those following amphibole asbestos exposure. The subsequent results through life-time post-exposure will follow.

关键词: 暂无
翻译标题与摘要 下载文献
作者列表:["Zaragosi LE","Deprez M","Barbry P"]

METHODS::The respiratory tract is lined by a pseudo-stratified epithelium from the nose to terminal bronchioles. This first line of defense of the lung against external stress includes five main cell types: basal, suprabasal, club, goblet and multiciliated cells, as well as rare cells such as ionocytes, neuroendocrine and tuft/brush cells. At homeostasis, this epithelium self-renews at low rate but is able of fast regeneration upon damage. Airway epithelial cell lineages during regeneration have been investigated in the mouse by genetic labeling, mainly after injuring the epithelium with noxious agents. From these approaches, basal cells have been identified as progenitors of club, goblet and multiciliated cells, but also of ionocytes and neuroendocrine cells. Single-cell RNA sequencing, coupled to lineage inference algorithms, has independently allowed the establishment of comprehensive pictures of cell lineage relationships in both mouse and human. In line with genetic tracing experiments in mouse trachea, studies using single-cell RNA sequencing (RNAseq) have shown that basal cells first differentiate into club cells, which in turn mature into goblet cells or differentiate into multiciliated cells. In the human airway epithelium, single-cell RNAseq has identified novel intermediate populations such as deuterosomal cells, 'hybrid' mucous-multiciliated cells and progenitors of rare cells. Novel differentiation dynamics, such as a transition from goblet to multiciliated cells have also been discovered. The future of cell lineage relationships in the respiratory tract now resides in the combination of genetic labeling approaches with single-cell RNAseq to establish, in a definitive manner, the hallmarks of cellular lineages in normal and pathological situations.

翻译标题与摘要 下载文献