小狗阅读会员会员
医学顶刊SCI精读工具

扫码登录小狗阅读

阅读SCI医学文献
Document
订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}

    按需关注领域/方向,精准获取前沿热点

  • {{item.title}}

    {{item.follow}}人关注

  • {{item.subscribe_count}}人订阅

    IF:{{item.impact_factor}}

    {{item.title}}

Blood transfusion for preventing primary and secondary stroke in people with sickle cell disease.

输血预防镰状细胞病患者的原发性和继发性卒中.

  • 影响因子:6.1030
  • DOI:10.1002/14651858.CD003146.pub4
  • 作者列表:"Estcourt LJ","Kohli R","Hopewell S","Trivella M","Wang WC
  • 发表时间:2020-07-27
Abstract

BACKGROUND:Sickle cell disease is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. Sickle cell disease can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Stroke affects around 10% of children with sickle cell anaemia (HbSS). Chronic blood transfusions may reduce the risk of vaso-occlusion and stroke by diluting the proportion of sickled cells in the circulation. This is an update of a Cochrane Review first published in 2002, and last updated in 2017. OBJECTIVES:To assess risks and benefits of chronic blood transfusion regimens in people with sickle cell disease for primary and secondary stroke prevention (excluding silent cerebral infarcts). SEARCH METHODS:We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 8 October 2019. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register: 19 September 2019. SELECTION CRITERIA:Randomised controlled trials comparing red blood cell transfusions as prophylaxis for stroke in people with sickle cell disease to alternative or standard treatment. There were no restrictions by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS:Two authors independently assessed trial eligibility and the risk of bias and extracted data. MAIN RESULTS:We included five trials (660 participants) published between 1998 and 2016. Four of these trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of sickle cell disease. Three trials compared regular red cell transfusions to standard care in primary prevention of stroke: two in children with no previous long-term transfusions; and one in children and adolescents on long-term transfusion. Two trials compared the drug hydroxyurea (hydroxycarbamide) and phlebotomy to long-term transfusions and iron chelation therapy: one in primary prevention (children); and one in secondary prevention (children and adolescents). The quality of the evidence was very low to moderate across different outcomes according to GRADE methodology. This was due to the trials being at a high risk of bias due to lack of blinding, indirectness and imprecise outcome estimates. Red cell transfusions versus standard care Children with no previous long-term transfusions Long-term transfusions probably reduce the incidence of clinical stroke in children with a higher risk of stroke (abnormal transcranial doppler velocities or previous history of silent cerebral infarct), risk ratio 0.12 (95% confidence interval 0.03 to 0.49) (two trials, 326 participants), moderate quality evidence. Long-term transfusions may: reduce the incidence of other sickle cell disease-related complications (acute chest syndrome, risk ratio 0.24 (95% confidence interval 0.12 to 0.48)) (two trials, 326 participants); increase quality of life (difference estimate -0.54, 95% confidence interval -0.92 to -0.17) (one trial, 166 participants); but make little or no difference to IQ scores (least square mean: 1.7, standard error 95% confidence interval -1.1 to 4.4) (one trial, 166 participants), low quality evidence. We are very uncertain whether long-term transfusions: reduce the risk of transient ischaemic attacks, Peto odds ratio 0.13 (95% confidence interval 0.01 to 2.11) (two trials, 323 participants); have any effect on all-cause mortality, no deaths reported (two trials, 326 participants); or increase the risk of alloimmunisation, risk ratio 3.16 (95% confidence interval 0.18 to 57.17) (one trial, 121 participants), very low quality evidence. Children and adolescents with previous long-term transfusions (one trial, 79 participants) We are very uncertain whether continuing long-term transfusions reduces the incidence of: stroke, risk ratio 0.22 (95% confidence interval 0.01 to 4.35); or all-cause mortality, Peto odds ratio 8.00 (95% confidence interval 0.16 to 404.12), very low quality evidence. Several review outcomes were only reported in one trial arm (sickle cell disease-related complications, alloimmunisation, transient ischaemic attacks). The trial did not report neurological impairment, or quality of life. Hydroxyurea and phlebotomy versus red cell transfusions and chelation Neither trial reported on neurological impairment, alloimmunisation, or quality of life. Primary prevention, children (one trial, 121 participants) Switching to hydroxyurea and phlebotomy may have little or no effect on liver iron concentrations, mean difference -1.80 mg Fe/g dry-weight liver (95% confidence interval -5.16 to 1.56), low quality evidence. We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: risk of stroke (no strokes); all-cause mortality (no deaths); transient ischaemic attacks, risk ratio 1.02 (95% confidence interval 0.21 to 4.84); or other sickle cell disease-related complications (acute chest syndrome, risk ratio 2.03 (95% confidence interval 0.39 to 10.69)), very low quality evidence. Secondary prevention, children and adolescents (one trial, 133 participants) Switching to hydroxyurea and phlebotomy may: increase the risk of sickle cell disease-related serious adverse events, risk ratio 3.10 (95% confidence interval 1.42 to 6.75); but have little or no effect on median liver iron concentrations (hydroxyurea, 17.3 mg Fe/g dry-weight liver (interquartile range 10.0 to 30.6)); transfusion 17.3 mg Fe/g dry-weight liver (interquartile range 8.8 to 30.7), low quality evidence. We are very uncertain whether switching to hydroxyurea and phlebotomy: increases the risk of stroke, risk ratio 14.78 (95% confidence interval 0.86 to 253.66); or has any effect on all-cause mortality, Peto odds ratio 0.98 (95% confidence interval 0.06 to 15.92); or transient ischaemic attacks, risk ratio 0.66 (95% confidence interval 0.25 to 1.74), very low quality evidence. AUTHORS' CONCLUSIONS:There is no evidence for managing adults, or children who do not have HbSS sickle cell disease. In children who are at higher risk of stroke and have not had previous long-term transfusions, there is moderate quality evidence that long-term red cell transfusions reduce the risk of stroke, and low quality evidence they also reduce the risk of other sickle cell disease-related complications. In primary and secondary prevention of stroke there is low quality evidence that switching to hydroxyurea with phlebotomy has little or no effect on the liver iron concentration. In secondary prevention of stroke there is low-quality evidence that switching to hydroxyurea with phlebotomy increases the risk of sickle cell disease-related events. All other evidence in this review is of very low quality.

摘要

BACKGROUND:Sickle cell disease is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. Sickle cell disease can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Stroke affects around 10% of children with sickle cell anaemia (HbSS). Chronic blood transfusions may reduce the risk of vaso-occlusion and stroke by diluting the proportion of sickled cells in the circulation. This is an update of a Cochrane Review first published in 2002, and last updated in 2017. OBJECTIVES:To assess risks and benefits of chronic blood transfusion regimens in people with sickle cell disease for primary and secondary stroke prevention (excluding silent cerebral infarcts). SEARCH METHODS:We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 8 October 2019. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Haemoglobinopathies Trials Register: 19 September 2019. SELECTION CRITERIA:Randomised controlled trials comparing red blood cell transfusions as prophylaxis for stroke in people with sickle cell disease to alternative or standard treatment. There were no restrictions by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS:Two authors independently assessed trial eligibility and the risk of bias and extracted data. MAIN RESULTS:We included five trials (660 participants) published between 1998 and 2016. Four of these trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of sickle cell disease. Three trials compared regular red cell transfusions to standard care in primary prevention of stroke: two in children with no previous long-term transfusions; and one in children and adolescents on long-term transfusion. Two trials compared the drug hydroxyurea (hydroxycarbamide) and phlebotomy to long-term transfusions and iron chelation therapy: one in primary prevention (children); and one in secondary prevention (children and adolescents). The quality of the evidence was very low to moderate across different outcomes according to GRADE methodology. This was due to the trials being at a high risk of bias due to lack of blinding, indirectness and imprecise outcome estimates. Red cell transfusions versus standard care Children with no previous long-term transfusions Long-term transfusions probably reduce the incidence of clinical stroke in children with a higher risk of stroke (abnormal transcranial doppler velocities or previous history of silent cerebral infarct), risk ratio 0.12 (95% confidence interval 0.03 to 0.49) (two trials, 326 participants), moderate quality evidence. Long-term transfusions may: reduce the incidence of other sickle cell disease-related complications (acute chest syndrome, risk ratio 0.24 (95% confidence interval 0.12 to 0.48)) (two trials, 326 participants); increase quality of life (difference estimate -0.54, 95% confidence interval -0.92 to -0.17) (one trial, 166 participants); but make little or no difference to IQ scores (least square mean: 1.7, standard error 95% confidence interval -1.1 to 4.4) (one trial, 166 participants), low quality evidence. We are very uncertain whether long-term transfusions: reduce the risk of transient ischaemic attacks, Peto odds ratio 0.13 (95% confidence interval 0.01 to 2.11) (two trials, 323 participants); have any effect on all-cause mortality, no deaths reported (two trials, 326 participants); or increase the risk of alloimmunisation, risk ratio 3.16 (95% confidence interval 0.18 to 57.17) (one trial, 121 participants), very low quality evidence. Children and adolescents with previous long-term transfusions (one trial, 79 participants) We are very uncertain whether continuing long-term transfusions reduces the incidence of: stroke, risk ratio 0.22 (95% confidence interval 0.01 to 4.35); or all-cause mortality, Peto odds ratio 8.00 (95% confidence interval 0.16 to 404.12), very low quality evidence. Several review outcomes were only reported in one trial arm (sickle cell disease-related complications, alloimmunisation, transient ischaemic attacks). The trial did not report neurological impairment, or quality of life. Hydroxyurea and phlebotomy versus red cell transfusions and chelation Neither trial reported on neurological impairment, alloimmunisation, or quality of life. Primary prevention, children (one trial, 121 participants) Switching to hydroxyurea and phlebotomy may have little or no effect on liver iron concentrations, mean difference -1.80 mg Fe/g dry-weight liver (95% confidence interval -5.16 to 1.56), low quality evidence. We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: risk of stroke (no strokes); all-cause mortality (no deaths); transient ischaemic attacks, risk ratio 1.02 (95% confidence interval 0.21 to 4.84); or other sickle cell disease-related complications (acute chest syndrome, risk ratio 2.03 (95% confidence interval 0.39 to 10.69)), very low quality evidence. Secondary prevention, children and adolescents (one trial, 133 participants) Switching to hydroxyurea and phlebotomy may: increase the risk of sickle cell disease-related serious adverse events, risk ratio 3.10 (95% confidence interval 1.42 to 6.75); but have little or no effect on median liver iron concentrations (hydroxyurea, 17.3 mg Fe/g dry-weight liver (interquartile range 10.0 to 30.6)); transfusion 17.3 mg Fe/g dry-weight liver (interquartile range 8.8 to 30.7), low quality evidence. We are very uncertain whether switching to hydroxyurea and phlebotomy: increases the risk of stroke, risk ratio 14.78 (95% confidence interval 0.86 to 253.66); or has any effect on all-cause mortality, Peto odds ratio 0.98 (95% confidence interval 0.06 to 15.92); or transient ischaemic attacks, risk ratio 0.66 (95% confidence interval 0.25 to 1.74), very low quality evidence. AUTHORS' CONCLUSIONS:There is no evidence for managing adults, or children who do not have HbSS sickle cell disease. In children who are at higher risk of stroke and have not had previous long-term transfusions, there is moderate quality evidence that long-term red cell transfusions reduce the risk of stroke, and low quality evidence they also reduce the risk of other sickle cell disease-related complications. In primary and secondary prevention of stroke there is low quality evidence that switching to hydroxyurea with phlebotomy has little or no effect on the liver iron concentration. In secondary prevention of stroke there is low-quality evidence that switching to hydroxyurea with phlebotomy increases the risk of sickle cell disease-related events. All other evidence in this review is of very low quality.

关键词:
阅读人数:1人
下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:4.22
发表时间:2020-02-01
DOI:10.1016/j.ajog.2019.07.044
作者列表:["Yang J","Peng CF","Qi Y","Rao XQ","Guo F","Hou Y","He W","Wu J","Chen YY","Zhao X","Wang YN","Peng H","Wang D","Du L","Luo MY","Huang QF","Liu HL","Yin A"]

METHODS:BACKGROUND:Thalassemia is one of the most common monogenetic diseases in the south of China and Southeast Asia. Hemoglobin Bart's hydrops fetalis syndrome was caused by a homozygous Southeast Asian deletion (-/-) in the HBA gene. Few studies have proved the potential of screen for Bart's hydrops fetalis using fetal cell-free DNA. However, the number of cases is still relatively small. Clinical trials of large samples would be needed. OBJECTIVE:In this study, we aimed to develop a noninvasive method of target-captured sequencing and genotyping by the Bayesian method using cell-free fetal DNA to identify the fetal genotype in pregnant women who are at risk of having hemoglobin Bart hydrops fetalis in a large-scale study. STUDY DESIGN:In total, 192,173 couples from 30 hospitals were enrolled in our study and 878 couples were recruited, among whom both the pregnant women and their husbands were detected to be carriers of Southeast Asian type (-/αα) of α-thalassemia. Prenatal diagnosis was performed by chorionic villus sampling, amniocentesis, or cordocentesis using gap-polymerase chain reaction considered as the golden standard. RESULTS:As a result, we found that the sensitivity and specificity of our noninvasive method were 98.81% and 94.72%, respectively, in the training set as well as 100% and 99.31%, respectively, in the testing set. Moreover, our method could identify all of 885 maternal samples with the Southeast Asian carrier and 36 trisomy samples with 100% of sensitivity in T13, T18, and T21 and 99.89% (1 of 917) and 99.88% (1 of 888) of specificity in T18 and T21, respectively. CONCLUSION:Our method opens the possibility of early screening for maternal genotyping of α-thalassemia, fetal aneuploidies in chromosomes 13/18/21, and hemoglobin Bart hydrops fetalis detection in 1 tube of maternal plasma.

影响因子:1.74
发表时间:2020-02-01
DOI:10.1177/1049909119868657
作者列表:["Suarez ML","Schlaeger JM","Angulo V","Shuey DA","Carrasco J","Roach KL","Ezenwa MO","Yao Y","Wang ZJ","Molokie RE","Wilkie DJ"]

METHODS:OBJECTIVES:Sickle cell disease (SCD) is a serious illness with disabling acute and chronic pain that needs better therapies, but insufficient patient participation in research is a major impediment to advancing SCD pain management. The purpose of this article is to discuss the challenges of conducting an SCD study and approaches to successfully overcoming those challenges. DESIGN:In a repeated-measures, longitudinal study designed to characterize SCD pain phenotypes, we recruited 311 adults of African ancestry. Adults with SCD completed 4 study visits 6 months apart, and age- and gender-matched healthy controls completed 1 visit. RESULTS:We recruited and completed measures on 186 patients with SCD and 125 healthy controls. We retained 151 patients with SCD with data at 4 time points over 18 months and 125 healthy controls (1 time point) but encountered many challenges in recruitment and study visit completion. Enrollment delays often arose from patients' difficulty in taking time from their complicated lives and frequent pain episodes. Once scheduled, participants with SCD cancelled 49% of visits often because of pain; controls canceled 30% of their scheduled visits. To facilitate recruitment and retention, we implemented a number of strategies that were invaluable in our success. CONCLUSION:Patients' struggles with illness, chronic pain, and their life situations resulted in many challenges to recruitment and completion of study visits. Important to overcoming challenges was gaining the trust of patients with SCD and a participant-centered approach. Early identification of potential problems allowed strategies to be instituted proactively, leading to success.

影响因子:2.13
发表时间:2020-01-01
DOI:10.1093/ajcp/aqz108
作者列表:["Mukherjee MB","Colah RB","Mehta PR","Shinde N","Jain D","Desai S","Dave K","Italia Y","Raicha B","Serrao E"]

METHODS:OBJECTIVES:Sickle cell anemia is the commonest genetic disorder in India, and the frequency of the sickle cell gene is very high in the remote tribal areas where facilities are generally limited. Therefore, a rapid and affordable point-of-care test for sickle cell disease is needed. METHODS:The diagnostic accuracy of HemoTypeSC was evaluated against automated high-performance liquid chromatography (HPLC) as the gold standard for its efficacy in a newborn screening program. RESULTS:A total of 1,559 individuals (980 newborns and 579 adults) from four participating centers were analyzed by both methods. HemoTypeSC correctly identified 209 of 211 total hemoglobin (Hb) SS cases, for a 99.1%/99.9% total HbSS sensitivity/specificity. Overall, HemoTypeSC exhibited sensitivity and specificity of 98.1% and 99.1% for all possible phenotypes (HbAA, HbAS, and HbSS) detected. HPLC is relatively expensive and not available in most laboratories in remote tribal areas. CONCLUSIONS:We conclude that the rapid, point-of-care testing device HemoTypeSC test is suitable for population and newborn screening for the HbS phenotype.

翻译标题与摘要 下载文献
血红蛋白病方向

由于血红蛋白分子结构异常(异常血红蛋白病),或珠蛋白肽链合成速率异常(珠蛋白生成障碍性贫血,又称海洋性贫血)所引起的一组遗传性血液病。

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: