订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}


  • {{item.title}}


  • {{item.subscribe_count}}人订阅



Effect of piperlongumine during exposure to cigarette smoke reduces inflammation and lung injury.


  • 影响因子:2.74
  • DOI:10.1016/j.pupt.2020.101896
  • 作者列表:"Sant'Ana Leal M","Souza HR","Possebon L","Cornélio ML","Riffo-Vasquez Y","Girol AP","Oliani SM
  • 发表时间:2020-01-24

:Chronic obstructive pulmonary disease (COPD) is related to smoking and anti-inflammatory therapy is indicated. Among the mediators with anti-inflammatory properties, we highlight piperlongumine (PL), an alkaloid/amide of Piper longum. Here we evaluated the PL administration on an experimental model of respiratory inflammation resulting from exposure to cigarette smoke. Male Balb/c mice were exposed to burning of 10 commercial cigarettes, 2x/day, for five weeks on specific equipment. PL efficacy was evaluated in control, exposed to smoke without treatment and PL treated (2.0 mg/kg, 3x/week) groups. Animals were weighed and plethysmographic analyses performed at the end of the exposure protocol. Inflammatory cells were evaluated in the bronchoalveolar lavage (BAL) and hemoglobin and glucose in the blood. Lung fragments were processed for histopathological studies and AnxA1, COX-2, NF-kB and neutrophil elastase expressions. Plethysmography revealed that PL maintained pulmonary frequency, volume and ventilation parameters similar to controls, with respiratory volume reduction compared to untreated animals. Final weight was reduced in both exposed groups. PL decreased hemoglobin concentration, attenuated the reduction of glucose levels and reduced influx of lymphocytes, neutrophils and macrophages in BAL. Histopathologically occured infiltration of inflammatory cells, increase of the interalveolar septa and intra-alveolar spaces in untreated animals. But, PL administration recovered lung tissues and, immunohistochemically, promoted increased expression of AnxA1 and reduction of COX-2, NF-kB and neutrophil elastase. Together the results indicate that PL attenuates systemic and pulmonary inflammatory changes, partially by modulating the expression the endogenous AnxA1, and may represent a promising therapy in preventing the inflammation induced by cigarette smoke.


: 慢性阻塞性肺疾病 (COPD) 与吸烟有关,有抗炎治疗指征。在具有抗炎特性的介质中,我们突出了 piperum碱 (PL),Piper Piper 的生物碱/酰胺。在这里,我们在暴露于香烟烟雾导致的呼吸道炎症的实验模型上评价了 PL 给药。雄性 Balb/c 小鼠在特定设备上暴露于 10 支商业香烟的燃烧,2x/天,持续 5 周。在对照组、暴露于未治疗的烟雾和 PL 治疗 (2.0 mg/kg,3x/周) 组中评价 PL 疗效。动物称重,并在暴露方案结束时进行体积描记分析。评估支气管肺泡灌洗 (BAL) 中的炎症细胞以及血液中的血红蛋白和葡萄糖。处理肺碎片进行组织病理学研究和 AnxA1 、 COX-2 、 NF-kB 和中性粒细胞弹性蛋白酶表达。体积描记术显示,PL 维持的肺频率、容量和通气参数与对照组相似,与未治疗动物相比,呼吸容量减少。两种暴露组的最终体重均降低。PL 降低血红蛋白浓度,减弱 BAL 中葡萄糖水平的降低,减少淋巴细胞、中性粒细胞和巨噬细胞的内流。未治疗动物在组织病理学上出现炎性细胞浸润、肺泡间隔和肺泡内间隙增加。但是,PL 给药恢复了肺组织,免疫组化显示,AnxA1 的表达增加,COX-2 、 NF-kB 和中性粒细胞弹性蛋白酶的减少。总之,这些结果表明 PL 减轻了全身和肺部的炎症变化,部分是通过调节内源性 AnxA1 的表达,可能是预防香烟烟雾诱导的炎症的一种有前途的疗法。



作者列表:["De Cunto G","Brancaleone V","Riemma MA","Cerqua I","Vellecco V","Spaziano G","Cavarra E","Bartalesi B","D'Agostino B","Lungarella G","Cirino G","Lucattelli M","Roviezzo F"]

METHODS:BACKGROUND AND PURPOSE:A critical role for sphingosine kinase/sphingosine-1-phosphate (S1P) pathway in the control of airway function has been demonstrated in respiratory diseases. Here, we address S1P contribution in a mouse model of mild chronic obstructive pulmonary disease (COPD). EXPERIMENTAL APPROACH:C57BL/6J mice have been exposed to room air or cigarette smoke up to 11 months and killed at different time points. Functional and molecular studies have been performed. KEY RESULTS:Cigarette smoke caused emphysematous changes throughout the lung parenchyma coupled to a progressive collagen deposition in both peribronchiolar and peribronchial areas. The high and low airways showed an increased reactivity to cholinergic stimulation and α-smooth muscle actin overexpression. Similarly, an increase in airway reactivity and lung resistances following S1P challenge occurred in smoking mice. A high expression of S1P, Sph-K2 , and S1P receptors (S1P2 and S1P3 ) has been detected in the lung of smoking mice. Sphingosine kinases inhibition reversed the increased cholinergic response in airways of smoking mice. CONCLUSIONS AND IMPLICATIONS:S1P signalling up-regulation follows the disease progression in smoking mice and is involved in the development of airway hyperresponsiveness. Our study defines a therapeutic potential for S1P inhibitors in management of airways hyperresponsiveness associated to emphysema in smokers with both asthma and COPD.

关键词: 暂无
翻译标题与摘要 下载文献
作者列表:["Bernstein DM","Toth B","Rogers RA","Kling DE","Kunzendorf P","Phillips JI","Ernst H"]

METHODS::The interim results from this 90-day multi-dose, inhalation toxicology study with life-time post-exposure observation has shown an important fundamental difference in persistence and pathological response in the lung between brake dust derived from brake-pads manufactured with chrysotile, TiO2 or chrysotile alone in comparison to the amphiboles, crocidolite and amosite asbestos. In the brake dust exposure groups no significant pathological response was observed at any time. Slight macrophage accumulation of particles was noted. Wagner-scores, were from 1 to 2 (1 = air-control group) and were similar to the TiO2 group. Chrysotile being biodegradable, shows a weakening of its matrix and breaking into short fibers & particles that can be cleared by alveolar macrophages and continued dissolution. In the chrysotile exposure groups, particle laden macrophage accumulation was noted leading to a slight interstitial inflammatory response (Wagner-score 1-3). There was no peribronchiolar inflammation and occasional very slight interstitial fibrosis. The histopathology and the confocal analyses clearly differentiate the pathological response from amphibole asbestos, crocidolite and amosite, compared to that from the brake dust and chrysotile. Both crocidolite and amosite induced persistent inflammation, microgranulomas, and fibrosis (Wagner-scores 4), which persisted through the post exposure period. The confocal microscopy of the lung and snap-frozen chestwalls quantified the extensive inflammatory response and collagen development in the lung and on the visceral and parietal surfaces. The interim results reported here, provide a clear basis for differentiating the effects from brake dust exposure from those following amphibole asbestos exposure. The subsequent results through life-time post-exposure will follow.

关键词: 暂无
翻译标题与摘要 下载文献
作者列表:["Zaragosi LE","Deprez M","Barbry P"]

METHODS::The respiratory tract is lined by a pseudo-stratified epithelium from the nose to terminal bronchioles. This first line of defense of the lung against external stress includes five main cell types: basal, suprabasal, club, goblet and multiciliated cells, as well as rare cells such as ionocytes, neuroendocrine and tuft/brush cells. At homeostasis, this epithelium self-renews at low rate but is able of fast regeneration upon damage. Airway epithelial cell lineages during regeneration have been investigated in the mouse by genetic labeling, mainly after injuring the epithelium with noxious agents. From these approaches, basal cells have been identified as progenitors of club, goblet and multiciliated cells, but also of ionocytes and neuroendocrine cells. Single-cell RNA sequencing, coupled to lineage inference algorithms, has independently allowed the establishment of comprehensive pictures of cell lineage relationships in both mouse and human. In line with genetic tracing experiments in mouse trachea, studies using single-cell RNA sequencing (RNAseq) have shown that basal cells first differentiate into club cells, which in turn mature into goblet cells or differentiate into multiciliated cells. In the human airway epithelium, single-cell RNAseq has identified novel intermediate populations such as deuterosomal cells, 'hybrid' mucous-multiciliated cells and progenitors of rare cells. Novel differentiation dynamics, such as a transition from goblet to multiciliated cells have also been discovered. The future of cell lineage relationships in the respiratory tract now resides in the combination of genetic labeling approaches with single-cell RNAseq to establish, in a definitive manner, the hallmarks of cellular lineages in normal and pathological situations.

翻译标题与摘要 下载文献