扫码登录小狗阅读
Three-dimensional visualization of brain tumor progression based accurate segmentation via comparative holographic projection.
基于比较全息投影的脑肿瘤进展精确分割的三维可视化。
- 影响因子:3.02
- DOI:10.1371/journal.pone.0236835
- 作者列表:"Abdelazeem RM","Youssef D","El-Azab J","Hassab-Elnaby S","Agour M
- 发表时间:2020-07-30
Abstract
:We propose a new optical method based on comparative holographic projection for visual comparison between two abnormal follow-up magnetic resonance (MR) exams of glioblastoma patients to effectively visualize and assess tumor progression. First, the brain tissue and tumor areas are segmented from the MR exams using the fast marching method (FMM). The FMM approach is implemented on a computed pixel weight matrix based on an automated selection of a set of initialized target points. Thereafter, the associated phase holograms are calculated for the segmented structures based on an adaptive iterative Fourier transform algorithm (AIFTA). Within this approach, a spatial multiplexing is applied to reduce the speckle noise. Furthermore, hologram modulation is performed to represent two different reconstruction schemes. In both schemes, all calculated holograms are superimposed into a single two-dimensional (2D) hologram which is then displayed on a reflective phase-only spatial light modulator (SLM) for optical reconstruction. The optical reconstruction of the first scheme displays a 3D map of the tumor allowing to visualize the volume of the tumor after treatment and at the progression. Whereas, the second scheme displays the follow-up exams in a side-by-side mode highlighting tumor areas, so the assessment of each case can be fast achieved. The proposed system can be used as a valuable tool for interpretation and assessment of the tumor progression with respect to the treatment method providing an improvement in diagnosis and treatment planning.
摘要
: 我们提出了一种基于比较全息投影的新光学方法,用于胶质母细胞瘤患者的两次异常随访磁共振 (MR) 检查之间的视觉比较,以有效地可视化和评估肿瘤进展。首先,使用快速行进方法 (FMM) 从MR检查中分割脑组织和肿瘤区域。基于一组初始化目标点的自动选择,在计算的像素权重矩阵上实现FMM方法。此后,基于自适应迭代傅里叶变换算法 (AIFTA),针对分段结构计算相关联的相位全息图。在该方法中,应用空间复用来减少斑点噪声。此外,执行全息调制以表示两种不同的重建方案。在这两种方案中,所有计算的全息图被叠加到单个二维 (2D) 全息图中,该全息图然后被显示在用于光学重建的仅反射相位空间光调制器 (SLM) 上。第一方案的光学重建显示肿瘤的3D图,允许可视化治疗后和进展时肿瘤的体积。然而,第二种方案以并排模式显示后续检查,突出肿瘤区域,因此可以快速实现对每种情况的评估。所提出的系统可以用作解释和评估肿瘤进展的有价值的工具,相对于提供诊断和治疗计划改进的治疗方法。
小狗阅读
帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。
METHODS:OBJECTIVES:The aim was to evaluate the image quality and sensitivity to artifacts of compressed sensing (CS) acceleration technique, applied to 3D or breath-hold sequences in different clinical applications from brain to knee. METHODS:CS with an acceleration from 30 to 60% and conventional MRI sequences were performed in 10 different applications in 107 patients, leading to 120 comparisons. Readers were blinded to the technique for quantitative (contrast-to-noise ratio or functional measurements for cardiac cine) and qualitative (image quality, artifacts, diagnostic findings, and preference) image analyses. RESULTS:No statistically significant difference in image quality or artifacts was found for each sequence except for the cardiac cine CS for one of both readers and for the wrist 3D proton density (PD)-weighted CS sequence which showed less motion artifacts due to the reduced acquisition time. The contrast-to-noise ratio was lower for the elbow CS sequence but not statistically different in all other applications. Diagnostic findings were similar between conventional and CS sequence for all the comparisons except for four cases where motion artifacts corrupted either the conventional or the CS sequence. CONCLUSIONS:The evaluated CS sequences are ready to be used in clinical daily practice except for the elbow application which requires a lower acceleration. The CS factor should be tuned for each organ and sequence to obtain good image quality. It leads to 30% to 60% acceleration in the applications evaluated in this study which has a significant impact on clinical workflow. KEY POINTS:• Clinical implementation of compressed sensing (CS) reduced scan times of at least 30% with only minor penalty in image quality and no change in diagnostic findings. • The CS acceleration factor has to be tuned separately for each organ and sequence to guarantee similar image quality than conventional acquisition. • At least 30% and up to 60% acceleration is feasible in specific sequences in clinical routine.
METHODS:BACKGROUND:The main surgical techniques for spontaneous basal ganglia hemorrhage include stereotactic aspiration, endoscopic aspiration, and craniotomy. However, credible evidence is still needed to validate the effect of these techniques. OBJECTIVE:To explore the long-term outcomes of the three surgical techniques in the treatment of spontaneous basal ganglia hemorrhage. METHODS:Five hundred and sixteen patients with spontaneous basal ganglia hemorrhage who received stereotactic aspiration, endoscopic aspiration, or craniotomy were reviewed retrospectively. Six-month mortality and the modified Rankin Scale score were the primary and secondary outcomes, respectively. A multivariate logistic regression model was used to assess the effects of different surgical techniques on patient outcomes. RESULTS:For the entire cohort, the 6-month mortality in the endoscopic aspiration group was significantly lower than that in the stereotactic aspiration group (odds ratio (OR) 4.280, 95% CI 2.186 to 8.380); the 6-month mortality in the endoscopic aspiration group was lower than that in the craniotomy group, but the difference was not significant (OR=1.930, 95% CI 0.835 to 4.465). A further subgroup analysis was stratified by hematoma volume. The mortality in the endoscopic aspiration group was significantly lower than in the stereotactic aspiration group in the medium (≥40-<80 mL) (OR=2.438, 95% CI 1.101 to 5.402) and large hematoma subgroup (≥80 mL) (OR=66.532, 95% CI 6.345 to 697.675). Compared with the endoscopic aspiration group, a trend towards increased mortality was observed in the large hematoma subgroup of the craniotomy group (OR=8.721, 95% CI 0.933 to 81.551). CONCLUSION:Endoscopic aspiration can decrease the 6-month mortality of spontaneous basal ganglia hemorrhage, especially in patients with a hematoma volume ≥40 mL.
METHODS:OBJECTIVE:The primary purpose of this study was to evaluate the effectiveness of a three-dimensional (3D) software tool (smart planes) for displaying fetal brain planes, and the secondary purpose was to evaluate its accuracy in performing automatic measurements. MATERIAL AND METHODS:This prospective study included singleton fetuses with a gestational age (GA) greater than 18 weeks. Transabdominal two-dimensional ultrasound (2DUS) and 3D smart planes images were respectively used to obtain the basic planes of the fetal brain, with five parameters measured. The images, by either two-dimensional (2D) manual or 3D automatic operation, were reviewed by two experienced sonographers. The agreements between two measurements were analyzed. RESULTS:A total of 226 cases were included. The rates of successful detection by automatic display were as high as 80%. There was substantial agreement between the measurements of the biparietal diameter, head circumference and transcerebellar diameter, but poor agreement between the measurements of cisterna magna and lateral ventricle width. CONCLUSIONS:Smart Planes might be valuable for the rapid evaluation of fetal brain, because it simplifies the evaluation process. However, the technology requires improvement. In addition, this technology cannot replace the conventional manual US scans; it can only be used as an additional approach.
用电子、摄影或其他方法产生三维图像的过程。