扫码登录小狗阅读
A novel 'two-window' technique to facilitate totally 3D-endoscopic mitral valve repair.
一种新颖的 “双窗口” 技术,促进完全三维内窥镜二尖瓣修复。
- 影响因子:1.79
- DOI:10.1007/s00595-019-01928-0
- 作者列表:"Hosoba S","Ito T","Zaikokuji K
- 发表时间:2020-08-01
Abstract
:We describe our experience of a novel 'two-window' technique designed to assist in totally 3D-endoscopic mitral valve repair. A 10-mm trocar for a 3D-endoscope was inserted through the 4th intercostal space in the mid-axillary line. A main small incision (3 cm, 4th intercostal space) without rib spreading, and a second 1 cm incision (1-2 intercostal spaces above,) were made in the anterior axillary line. Soft tissue retractors were applied on both ports. A left atrial retractor, a left ventricular vent, and right-hand instruments were inserted through the main working port. A flexible aortic cross-clamp, an antegrade cardioplegia line, and left-hand instruments were inserted through the second port. Our two-window technique is safe, effective, and reproducible for totally endoscopic mitral valve repair.
摘要
: 我们描述了一种新颖的 “双窗口” 技术的经验,该技术旨在辅助完全3d内窥镜二尖瓣修复。通过腋中线的第4肋间插入用于3d内窥镜的10mm套管针。在腋前线作主小切口 (3厘米,第四肋间),无肋骨展开,第二切口1厘米 (上1-2个肋间)。在两个端口上应用软组织牵开器。通过主工作端口插入左心房牵开器、左心室通风口和右手器械。通过第二端口插入柔性主动脉交叉钳、顺行心脏停搏线和左手器械。我们的双窗口技术是安全的,有效的,可重复的完全内窥镜二尖瓣修复。
小狗阅读
帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。
METHODS:OBJECTIVES:The aim was to evaluate the image quality and sensitivity to artifacts of compressed sensing (CS) acceleration technique, applied to 3D or breath-hold sequences in different clinical applications from brain to knee. METHODS:CS with an acceleration from 30 to 60% and conventional MRI sequences were performed in 10 different applications in 107 patients, leading to 120 comparisons. Readers were blinded to the technique for quantitative (contrast-to-noise ratio or functional measurements for cardiac cine) and qualitative (image quality, artifacts, diagnostic findings, and preference) image analyses. RESULTS:No statistically significant difference in image quality or artifacts was found for each sequence except for the cardiac cine CS for one of both readers and for the wrist 3D proton density (PD)-weighted CS sequence which showed less motion artifacts due to the reduced acquisition time. The contrast-to-noise ratio was lower for the elbow CS sequence but not statistically different in all other applications. Diagnostic findings were similar between conventional and CS sequence for all the comparisons except for four cases where motion artifacts corrupted either the conventional or the CS sequence. CONCLUSIONS:The evaluated CS sequences are ready to be used in clinical daily practice except for the elbow application which requires a lower acceleration. The CS factor should be tuned for each organ and sequence to obtain good image quality. It leads to 30% to 60% acceleration in the applications evaluated in this study which has a significant impact on clinical workflow. KEY POINTS:• Clinical implementation of compressed sensing (CS) reduced scan times of at least 30% with only minor penalty in image quality and no change in diagnostic findings. • The CS acceleration factor has to be tuned separately for each organ and sequence to guarantee similar image quality than conventional acquisition. • At least 30% and up to 60% acceleration is feasible in specific sequences in clinical routine.
METHODS:BACKGROUND:The main surgical techniques for spontaneous basal ganglia hemorrhage include stereotactic aspiration, endoscopic aspiration, and craniotomy. However, credible evidence is still needed to validate the effect of these techniques. OBJECTIVE:To explore the long-term outcomes of the three surgical techniques in the treatment of spontaneous basal ganglia hemorrhage. METHODS:Five hundred and sixteen patients with spontaneous basal ganglia hemorrhage who received stereotactic aspiration, endoscopic aspiration, or craniotomy were reviewed retrospectively. Six-month mortality and the modified Rankin Scale score were the primary and secondary outcomes, respectively. A multivariate logistic regression model was used to assess the effects of different surgical techniques on patient outcomes. RESULTS:For the entire cohort, the 6-month mortality in the endoscopic aspiration group was significantly lower than that in the stereotactic aspiration group (odds ratio (OR) 4.280, 95% CI 2.186 to 8.380); the 6-month mortality in the endoscopic aspiration group was lower than that in the craniotomy group, but the difference was not significant (OR=1.930, 95% CI 0.835 to 4.465). A further subgroup analysis was stratified by hematoma volume. The mortality in the endoscopic aspiration group was significantly lower than in the stereotactic aspiration group in the medium (≥40-<80 mL) (OR=2.438, 95% CI 1.101 to 5.402) and large hematoma subgroup (≥80 mL) (OR=66.532, 95% CI 6.345 to 697.675). Compared with the endoscopic aspiration group, a trend towards increased mortality was observed in the large hematoma subgroup of the craniotomy group (OR=8.721, 95% CI 0.933 to 81.551). CONCLUSION:Endoscopic aspiration can decrease the 6-month mortality of spontaneous basal ganglia hemorrhage, especially in patients with a hematoma volume ≥40 mL.
METHODS:OBJECTIVE:The primary purpose of this study was to evaluate the effectiveness of a three-dimensional (3D) software tool (smart planes) for displaying fetal brain planes, and the secondary purpose was to evaluate its accuracy in performing automatic measurements. MATERIAL AND METHODS:This prospective study included singleton fetuses with a gestational age (GA) greater than 18 weeks. Transabdominal two-dimensional ultrasound (2DUS) and 3D smart planes images were respectively used to obtain the basic planes of the fetal brain, with five parameters measured. The images, by either two-dimensional (2D) manual or 3D automatic operation, were reviewed by two experienced sonographers. The agreements between two measurements were analyzed. RESULTS:A total of 226 cases were included. The rates of successful detection by automatic display were as high as 80%. There was substantial agreement between the measurements of the biparietal diameter, head circumference and transcerebellar diameter, but poor agreement between the measurements of cisterna magna and lateral ventricle width. CONCLUSIONS:Smart Planes might be valuable for the rapid evaluation of fetal brain, because it simplifies the evaluation process. However, the technology requires improvement. In addition, this technology cannot replace the conventional manual US scans; it can only be used as an additional approach.
用电子、摄影或其他方法产生三维图像的过程。