Measuring the performance of patient-specific solutions for minimally invasive transforaminal lumbar interbody fusion surgery.


  • 影响因子:1.63
  • DOI:10.1016/j.jocn.2019.11.008
  • 作者列表:"Thayaparan GK","Owbridge MG","Linden M","Thompson RG","Lewis PM","D'Urso PS
  • 发表时间:2020-01-01

:Pre-surgical planning using 3D-printed BioModels enables the preparation of a "patient-specific" kit to assist instrumented spinal fusion surgery. This approach has the potential to decrease operating time while also offering logistical benefits and cost savings for healthcare. We report our experience with this method in 129 consecutive patients undergoing minimally invasive transforaminal lumbar interbody fusion (MIS TLIF) over 27 months at a single centre and performed by a single surgeon. Patient imaging and surgical planning software were used to manufacture a 3D-printed patient-specific MIS TLIF kit for each patient consisting of a 1:1 scale spine BioModel, stereotactic K-wire guide, osteotomy guide, and retractors. Pre-selected pedicle screws, rods, and cages were sourced and supplied with the patient-specific kit. Additional implants were available on-shelf to address a size discrepancy between the kit implant and intraoperative measurements. Each BioModel was used pre-operatively for surgical planning, patient consent and education. The BioModel was sterilised for intraoperative reference and navigation purposes. Efficiency measures included operating time (153 ± 44 min), sterile tray usage (14 ± 3), fluoroscopy screening time (57.2 ± 23.7 s), operative waste (19 ± 8 L contaminated, 116 ± 30 L uncontaminated), and median hospital stay (4 days). The pre-selected kit implants exactly matched intraoperative measurements for 597/639 pedicle screws, 249/258 rods, and 46/148 cages. Pedicle screw placement accuracy was 97.8% (625/639) on postoperative CT. Complications included one intraoperative dural tear, no blood products administered, and six reoperations. Our experience demonstrates a viable application of patient-specific 3D-printed solutions and provides a benchmark for studies of efficiency in spinal fusion surgery.


: 使用3d打印的生物模型的手术前计划能够制备 “患者特异性” 试剂盒,以辅助器械脊柱融合手术。这种方法有可能减少运营时间,同时也为医疗保健提供物流效益和成本节约。我们报告了我们在129例连续接受微创经椎间孔腰椎椎间融合术 (MIS TLIF) 的患者中使用该方法的经验,该手术在一个单一中心进行,由一名外科医生完成。使用患者成像和手术计划软件为每位患者制造3d打印的患者特异性MIS TLIF套件,包括1:1比例的脊柱生物模型、立体定向K-wire导向器、截骨导向器和牵开器。预先选择的椎弓根螺钉、杆和笼是由患者特异性试剂盒提供的。额外的植入物可在货架上获得,以解决试剂盒植入物和术中测量之间的尺寸差异。术前使用每个生物模型进行手术计划、患者同意和教育。将生物模型灭菌用于术中参考和导航目的。有效措施包括操作时间 (153 ± 44分钟),无菌托盘使用 (14 ± 3),荧光检查筛选时间 (57.2 ± 23.7),手术废物 (19 ± 8升污染,116 ± 30升未污染),和中位住院时间 (4天)。预先选择的kit植入物与术中测量的597/639个椎弓根螺钉、249/258个棒和46/148个笼完全匹配。术后CT显示椎弓根螺钉置入准确率为97.8% (625/639)。并发症包括1例术中硬膜撕裂,未使用血液制品,6例再次手术。我们的经验证明了患者特定3d打印解决方案的可行应用,并为脊柱融合手术的效率研究提供了基准。



来源期刊:European radiology
作者列表:["Delattre BMA","Boudabbous S","Hansen C","Neroladaki A","Hachulla AL","Vargas MI"]

METHODS:OBJECTIVES:The aim was to evaluate the image quality and sensitivity to artifacts of compressed sensing (CS) acceleration technique, applied to 3D or breath-hold sequences in different clinical applications from brain to knee. METHODS:CS with an acceleration from 30 to 60% and conventional MRI sequences were performed in 10 different applications in 107 patients, leading to 120 comparisons. Readers were blinded to the technique for quantitative (contrast-to-noise ratio or functional measurements for cardiac cine) and qualitative (image quality, artifacts, diagnostic findings, and preference) image analyses. RESULTS:No statistically significant difference in image quality or artifacts was found for each sequence except for the cardiac cine CS for one of both readers and for the wrist 3D proton density (PD)-weighted CS sequence which showed less motion artifacts due to the reduced acquisition time. The contrast-to-noise ratio was lower for the elbow CS sequence but not statistically different in all other applications. Diagnostic findings were similar between conventional and CS sequence for all the comparisons except for four cases where motion artifacts corrupted either the conventional or the CS sequence. CONCLUSIONS:The evaluated CS sequences are ready to be used in clinical daily practice except for the elbow application which requires a lower acceleration. The CS factor should be tuned for each organ and sequence to obtain good image quality. It leads to 30% to 60% acceleration in the applications evaluated in this study which has a significant impact on clinical workflow. KEY POINTS:• Clinical implementation of compressed sensing (CS) reduced scan times of at least 30% with only minor penalty in image quality and no change in diagnostic findings. • The CS acceleration factor has to be tuned separately for each organ and sequence to guarantee similar image quality than conventional acquisition. • At least 30% and up to 60% acceleration is feasible in specific sequences in clinical routine.

翻译标题与摘要 下载文献
作者列表:["Guo W","Liu H","Tan Z","Zhang X","Gao J","Zhang L","Guo H","Bai H","Cui W","Liu X","Wu X","Luo J","Qu Y"]

METHODS:BACKGROUND:The main surgical techniques for spontaneous basal ganglia hemorrhage include stereotactic aspiration, endoscopic aspiration, and craniotomy. However, credible evidence is still needed to validate the effect of these techniques. OBJECTIVE:To explore the long-term outcomes of the three surgical techniques in the treatment of spontaneous basal ganglia hemorrhage. METHODS:Five hundred and sixteen patients with spontaneous basal ganglia hemorrhage who received stereotactic aspiration, endoscopic aspiration, or craniotomy were reviewed retrospectively. Six-month mortality and the modified Rankin Scale score were the primary and secondary outcomes, respectively. A multivariate logistic regression model was used to assess the effects of different surgical techniques on patient outcomes. RESULTS:For the entire cohort, the 6-month mortality in the endoscopic aspiration group was significantly lower than that in the stereotactic aspiration group (odds ratio (OR) 4.280, 95% CI 2.186 to 8.380); the 6-month mortality in the endoscopic aspiration group was lower than that in the craniotomy group, but the difference was not significant (OR=1.930, 95% CI 0.835 to 4.465). A further subgroup analysis was stratified by hematoma volume. The mortality in the endoscopic aspiration group was significantly lower than in the stereotactic aspiration group in the medium (≥40-<80 mL) (OR=2.438, 95% CI 1.101 to 5.402) and large hematoma subgroup (≥80 mL) (OR=66.532, 95% CI 6.345 to 697.675). Compared with the endoscopic aspiration group, a trend towards increased mortality was observed in the large hematoma subgroup of the craniotomy group (OR=8.721, 95% CI 0.933 to 81.551). CONCLUSION:Endoscopic aspiration can decrease the 6-month mortality of spontaneous basal ganglia hemorrhage, especially in patients with a hematoma volume ≥40 mL.

作者列表:["Meng L","Zhao D","Yang Z","Wang B"]

METHODS:OBJECTIVE:The primary purpose of this study was to evaluate the effectiveness of a three-dimensional (3D) software tool (smart planes) for displaying fetal brain planes, and the secondary purpose was to evaluate its accuracy in performing automatic measurements. MATERIAL AND METHODS:This prospective study included singleton fetuses with a gestational age (GA) greater than 18 weeks. Transabdominal two-dimensional ultrasound (2DUS) and 3D smart planes images were respectively used to obtain the basic planes of the fetal brain, with five parameters measured. The images, by either two-dimensional (2D) manual or 3D automatic operation, were reviewed by two experienced sonographers. The agreements between two measurements were analyzed. RESULTS:A total of 226 cases were included. The rates of successful detection by automatic display were as high as 80%. There was substantial agreement between the measurements of the biparietal diameter, head circumference and transcerebellar diameter, but poor agreement between the measurements of cisterna magna and lateral ventricle width. CONCLUSIONS:Smart Planes might be valuable for the rapid evaluation of fetal brain, because it simplifies the evaluation process. However, the technology requires improvement. In addition, this technology cannot replace the conventional manual US scans; it can only be used as an additional approach.

翻译标题与摘要 下载文献