小狗阅读会员会员
医学顶刊SCI精读工具

扫码登录小狗阅读

阅读SCI医学文献
Document
订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}

    按需关注领域/方向,精准获取前沿热点

  • {{item.title}}

    {{item.follow}}人关注

  • {{item.subscribe_count}}人订阅

    IF:{{item.impact_factor}}

    {{item.title}}

Multicolor 3D Printing of Complex Intracranial Tumors in Neurosurgery.

神经外科复杂颅内肿瘤的多色3D打印。

  • 影响因子:1.30
  • DOI:10.3791/60471
  • 作者列表:"Kosterhon M","Neufurth M","Neulen A","Schäfer L","Conrad J","Kantelhardt SR","Müller WEG","Ringel F
  • 发表时间:2020-01-11
Abstract

:Three-dimensional (3D) printing technologies offer the possibility of visualizing patient-specific pathologies in a physical model of correct dimensions. The model can be used for planning and simulating critical steps of a surgical approach. Therefore, it is important that anatomical structures such as blood vessels inside a tumor can be printed to be colored not only on their surface, but throughout their whole volume. During simulation this allows for the removal of certain parts (e.g., with a high-speed drill) and revealing internally located structures of a different color. Thus, diagnostic information from various imaging modalities (e.g., CT, MRI) can be combined in a single compact and tangible object. However, preparation and printing of such a fully colored anatomical model remains a difficult task. Therefore, a step-by-step guide is provided, demonstrating the fusion of different cross-sectional imaging data sets, segmentation of anatomical structures, and creation of a virtual model. In a second step the virtual model is printed with volumetrically colored anatomical structures using a plaster-based color 3D binder jetting technique. This method allows highly accurate reproduction of patient-specific anatomy as shown in a series of 3D-printed petrous apex chondrosarcomas. Furthermore, the models created can be cut and drilled, revealing internal structures that allow for simulation of surgical procedures.

摘要

: 三维 (3D) 打印技术提供了在正确尺寸的物理模型中可视化患者特定病理的可能性。该模型可用于规划和模拟外科手术方法的关键步骤。因此,重要的是,诸如肿瘤内的血管的解剖结构不仅可以在它们的表面上而且可以在它们的整个体积上被打印成彩色。在模拟期间,这允许移除某些部件 (例如,使用高速钻头) 并显示不同颜色的内部定位结构。因此,来自各种成像模态 (例如,CT、MRI) 的诊断信息可以组合在单个紧凑且有形的对象中。然而,这种全彩色解剖模型的制备和打印仍然是一项困难的任务。因此,提供分步指南,展示不同横截面成像数据集的融合、解剖结构的分割和虚拟模型的创建。在第二步骤中,使用基于石膏的彩色3D粘合剂喷射技术用体积着色的解剖结构打印虚拟模型。该方法允许高度精确地再现患者特异性解剖结构,如一系列3d打印的岩尖软骨肉瘤所示。此外,创建的模型可以被切割和钻孔,揭示允许模拟外科手术的内部结构。

关键词:
阅读人数:6人
下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:4.08
发表时间:2020-01-01
来源期刊:European radiology
DOI:10.1007/s00330-019-06319-0
作者列表:["Delattre BMA","Boudabbous S","Hansen C","Neroladaki A","Hachulla AL","Vargas MI"]

METHODS:OBJECTIVES:The aim was to evaluate the image quality and sensitivity to artifacts of compressed sensing (CS) acceleration technique, applied to 3D or breath-hold sequences in different clinical applications from brain to knee. METHODS:CS with an acceleration from 30 to 60% and conventional MRI sequences were performed in 10 different applications in 107 patients, leading to 120 comparisons. Readers were blinded to the technique for quantitative (contrast-to-noise ratio or functional measurements for cardiac cine) and qualitative (image quality, artifacts, diagnostic findings, and preference) image analyses. RESULTS:No statistically significant difference in image quality or artifacts was found for each sequence except for the cardiac cine CS for one of both readers and for the wrist 3D proton density (PD)-weighted CS sequence which showed less motion artifacts due to the reduced acquisition time. The contrast-to-noise ratio was lower for the elbow CS sequence but not statistically different in all other applications. Diagnostic findings were similar between conventional and CS sequence for all the comparisons except for four cases where motion artifacts corrupted either the conventional or the CS sequence. CONCLUSIONS:The evaluated CS sequences are ready to be used in clinical daily practice except for the elbow application which requires a lower acceleration. The CS factor should be tuned for each organ and sequence to obtain good image quality. It leads to 30% to 60% acceleration in the applications evaluated in this study which has a significant impact on clinical workflow. KEY POINTS:• Clinical implementation of compressed sensing (CS) reduced scan times of at least 30% with only minor penalty in image quality and no change in diagnostic findings. • The CS acceleration factor has to be tuned separately for each organ and sequence to guarantee similar image quality than conventional acquisition. • At least 30% and up to 60% acceleration is feasible in specific sequences in clinical routine.

翻译标题与摘要 下载文献
影响因子:2.98
发表时间:2020-01-01
DOI:10.1136/neurintsurg-2019-014962
作者列表:["Guo W","Liu H","Tan Z","Zhang X","Gao J","Zhang L","Guo H","Bai H","Cui W","Liu X","Wu X","Luo J","Qu Y"]

METHODS:BACKGROUND:The main surgical techniques for spontaneous basal ganglia hemorrhage include stereotactic aspiration, endoscopic aspiration, and craniotomy. However, credible evidence is still needed to validate the effect of these techniques. OBJECTIVE:To explore the long-term outcomes of the three surgical techniques in the treatment of spontaneous basal ganglia hemorrhage. METHODS:Five hundred and sixteen patients with spontaneous basal ganglia hemorrhage who received stereotactic aspiration, endoscopic aspiration, or craniotomy were reviewed retrospectively. Six-month mortality and the modified Rankin Scale score were the primary and secondary outcomes, respectively. A multivariate logistic regression model was used to assess the effects of different surgical techniques on patient outcomes. RESULTS:For the entire cohort, the 6-month mortality in the endoscopic aspiration group was significantly lower than that in the stereotactic aspiration group (odds ratio (OR) 4.280, 95% CI 2.186 to 8.380); the 6-month mortality in the endoscopic aspiration group was lower than that in the craniotomy group, but the difference was not significant (OR=1.930, 95% CI 0.835 to 4.465). A further subgroup analysis was stratified by hematoma volume. The mortality in the endoscopic aspiration group was significantly lower than in the stereotactic aspiration group in the medium (≥40-<80 mL) (OR=2.438, 95% CI 1.101 to 5.402) and large hematoma subgroup (≥80 mL) (OR=66.532, 95% CI 6.345 to 697.675). Compared with the endoscopic aspiration group, a trend towards increased mortality was observed in the large hematoma subgroup of the craniotomy group (OR=8.721, 95% CI 0.933 to 81.551). CONCLUSION:Endoscopic aspiration can decrease the 6-month mortality of spontaneous basal ganglia hemorrhage, especially in patients with a hematoma volume ≥40 mL.

影响因子:0.96
发表时间:2020-02-01
DOI:10.1002/jcu.22762
作者列表:["Meng L","Zhao D","Yang Z","Wang B"]

METHODS:OBJECTIVE:The primary purpose of this study was to evaluate the effectiveness of a three-dimensional (3D) software tool (smart planes) for displaying fetal brain planes, and the secondary purpose was to evaluate its accuracy in performing automatic measurements. MATERIAL AND METHODS:This prospective study included singleton fetuses with a gestational age (GA) greater than 18 weeks. Transabdominal two-dimensional ultrasound (2DUS) and 3D smart planes images were respectively used to obtain the basic planes of the fetal brain, with five parameters measured. The images, by either two-dimensional (2D) manual or 3D automatic operation, were reviewed by two experienced sonographers. The agreements between two measurements were analyzed. RESULTS:A total of 226 cases were included. The rates of successful detection by automatic display were as high as 80%. There was substantial agreement between the measurements of the biparietal diameter, head circumference and transcerebellar diameter, but poor agreement between the measurements of cisterna magna and lateral ventricle width. CONCLUSIONS:Smart Planes might be valuable for the rapid evaluation of fetal brain, because it simplifies the evaluation process. However, the technology requires improvement. In addition, this technology cannot replace the conventional manual US scans; it can only be used as an additional approach.

翻译标题与摘要 下载文献
三维成像方向

用电子、摄影或其他方法产生三维图像的过程。

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: