小狗阅读会员会员
医学顶刊SCI精读工具

扫码登录小狗阅读

阅读SCI医学文献
Document
订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}

    按需关注领域/方向,精准获取前沿热点

  • {{item.title}}

    {{item.follow}}人关注

  • {{item.subscribe_count}}人订阅

    IF:{{item.impact_factor}}

    {{item.title}}

3D Multicolor DNA FISH Tool to Study Nuclear Architecture in Human Primary Cells.

研究人类原代细胞核结构的3D多色DNA FISH工具。

  • 影响因子:1.30
  • DOI:10.3791/60712
  • 作者列表:"Marasca F","Cortesi A","Manganaro L","Bodega B
  • 发表时间:2020-01-25
Abstract

:A major question in cell biology is genomic organization within the nuclear space and how chromatin architecture can influence processes such as gene expression, cell identity and differentiation. Many approaches developed to study the 3D architecture of the genome can be divided into two complementary categories: chromosome conformation capture based technologies (C-technologies) and imaging. While the former is based on capturing the chromosome conformation and proximal DNA interactions in a population of fixed cells, the latter, based on DNA fluorescence in situ hybridization (FISH) on 3D-preserved nuclei, allows contemporary visualization of multiple loci at a single cell level (multicolor), examining their interactions and distribution within the nucleus (3D multicolor DNA FISH). The technique of 3D multicolor DNA FISH has a limitation of visualizing only a few predetermined loci, not permitting a comprehensive analysis of the nuclear architecture. However, given the robustness of its results, 3D multicolor DNA FISH in combination with 3D-microscopy and image reconstruction is a possible method to validate C-technology based results and to unambiguously study the position and organization of specific loci at a single cell level. Here, we propose a step by step method of 3D multicolor DNA FISH suitable for a wide range of human primary cells and discuss all the practical actions, crucial steps, notions of 3D imaging and data analysis needed to obtained a successful and informative 3D multicolor DNA FISH within different biological contexts.

摘要

: 细胞生物学中的一个主要问题是核空间内的基因组组织以及染色质结构如何影响基因表达,细胞身份和分化等过程。为研究基因组的3D结构而开发的许多方法可以分为两个互补的类别: 基于染色体构象捕获的技术 (C-技术) 和成像。而前者基于捕获固定细胞群体中的染色体构象和近端DNA相互作用,后者基于DNA荧光原位杂交 (FISH) 在3d保存的细胞核上,允许在单细胞水平 (多色) 的多个位点的当代可视化,检查它们在细胞核内的相互作用和分布 (3D多色DNA FISH)。3D多色DNA FISH的技术具有仅可视化少数预定基因座的限制,不允许核结构的全面分析。然而,鉴于其结果的稳健性,3D多色DNA FISH结合3D显微镜和图像重建是验证基于C技术的结果并在单细胞水平上明确研究特定基因座的位置和组织的可能方法。在这里,我们提出了一种适用于广泛人类原代细胞的3D多色DNA鱼的分步方法,并讨论了在不同生物背景下获得成功和信息丰富的3D多色DNA鱼所需的所有实际行动,关键步骤,3D成像和数据分析的概念。

关键词:
阅读人数:0人
下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:4.08
发表时间:2020-01-01
来源期刊:European radiology
DOI:10.1007/s00330-019-06319-0
作者列表:["Delattre BMA","Boudabbous S","Hansen C","Neroladaki A","Hachulla AL","Vargas MI"]

METHODS:OBJECTIVES:The aim was to evaluate the image quality and sensitivity to artifacts of compressed sensing (CS) acceleration technique, applied to 3D or breath-hold sequences in different clinical applications from brain to knee. METHODS:CS with an acceleration from 30 to 60% and conventional MRI sequences were performed in 10 different applications in 107 patients, leading to 120 comparisons. Readers were blinded to the technique for quantitative (contrast-to-noise ratio or functional measurements for cardiac cine) and qualitative (image quality, artifacts, diagnostic findings, and preference) image analyses. RESULTS:No statistically significant difference in image quality or artifacts was found for each sequence except for the cardiac cine CS for one of both readers and for the wrist 3D proton density (PD)-weighted CS sequence which showed less motion artifacts due to the reduced acquisition time. The contrast-to-noise ratio was lower for the elbow CS sequence but not statistically different in all other applications. Diagnostic findings were similar between conventional and CS sequence for all the comparisons except for four cases where motion artifacts corrupted either the conventional or the CS sequence. CONCLUSIONS:The evaluated CS sequences are ready to be used in clinical daily practice except for the elbow application which requires a lower acceleration. The CS factor should be tuned for each organ and sequence to obtain good image quality. It leads to 30% to 60% acceleration in the applications evaluated in this study which has a significant impact on clinical workflow. KEY POINTS:• Clinical implementation of compressed sensing (CS) reduced scan times of at least 30% with only minor penalty in image quality and no change in diagnostic findings. • The CS acceleration factor has to be tuned separately for each organ and sequence to guarantee similar image quality than conventional acquisition. • At least 30% and up to 60% acceleration is feasible in specific sequences in clinical routine.

翻译标题与摘要 下载文献
影响因子:2.98
发表时间:2020-01-01
DOI:10.1136/neurintsurg-2019-014962
作者列表:["Guo W","Liu H","Tan Z","Zhang X","Gao J","Zhang L","Guo H","Bai H","Cui W","Liu X","Wu X","Luo J","Qu Y"]

METHODS:BACKGROUND:The main surgical techniques for spontaneous basal ganglia hemorrhage include stereotactic aspiration, endoscopic aspiration, and craniotomy. However, credible evidence is still needed to validate the effect of these techniques. OBJECTIVE:To explore the long-term outcomes of the three surgical techniques in the treatment of spontaneous basal ganglia hemorrhage. METHODS:Five hundred and sixteen patients with spontaneous basal ganglia hemorrhage who received stereotactic aspiration, endoscopic aspiration, or craniotomy were reviewed retrospectively. Six-month mortality and the modified Rankin Scale score were the primary and secondary outcomes, respectively. A multivariate logistic regression model was used to assess the effects of different surgical techniques on patient outcomes. RESULTS:For the entire cohort, the 6-month mortality in the endoscopic aspiration group was significantly lower than that in the stereotactic aspiration group (odds ratio (OR) 4.280, 95% CI 2.186 to 8.380); the 6-month mortality in the endoscopic aspiration group was lower than that in the craniotomy group, but the difference was not significant (OR=1.930, 95% CI 0.835 to 4.465). A further subgroup analysis was stratified by hematoma volume. The mortality in the endoscopic aspiration group was significantly lower than in the stereotactic aspiration group in the medium (≥40-<80 mL) (OR=2.438, 95% CI 1.101 to 5.402) and large hematoma subgroup (≥80 mL) (OR=66.532, 95% CI 6.345 to 697.675). Compared with the endoscopic aspiration group, a trend towards increased mortality was observed in the large hematoma subgroup of the craniotomy group (OR=8.721, 95% CI 0.933 to 81.551). CONCLUSION:Endoscopic aspiration can decrease the 6-month mortality of spontaneous basal ganglia hemorrhage, especially in patients with a hematoma volume ≥40 mL.

影响因子:0.96
发表时间:2020-02-01
DOI:10.1002/jcu.22762
作者列表:["Meng L","Zhao D","Yang Z","Wang B"]

METHODS:OBJECTIVE:The primary purpose of this study was to evaluate the effectiveness of a three-dimensional (3D) software tool (smart planes) for displaying fetal brain planes, and the secondary purpose was to evaluate its accuracy in performing automatic measurements. MATERIAL AND METHODS:This prospective study included singleton fetuses with a gestational age (GA) greater than 18 weeks. Transabdominal two-dimensional ultrasound (2DUS) and 3D smart planes images were respectively used to obtain the basic planes of the fetal brain, with five parameters measured. The images, by either two-dimensional (2D) manual or 3D automatic operation, were reviewed by two experienced sonographers. The agreements between two measurements were analyzed. RESULTS:A total of 226 cases were included. The rates of successful detection by automatic display were as high as 80%. There was substantial agreement between the measurements of the biparietal diameter, head circumference and transcerebellar diameter, but poor agreement between the measurements of cisterna magna and lateral ventricle width. CONCLUSIONS:Smart Planes might be valuable for the rapid evaluation of fetal brain, because it simplifies the evaluation process. However, the technology requires improvement. In addition, this technology cannot replace the conventional manual US scans; it can only be used as an additional approach.

翻译标题与摘要 下载文献
三维成像方向

用电子、摄影或其他方法产生三维图像的过程。

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: