小狗阅读会员会员
医学顶刊SCI精读工具

扫码登录小狗阅读

阅读SCI医学文献
Document
订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}

    按需关注领域/方向,精准获取前沿热点

  • {{item.title}}

    {{item.follow}}人关注

  • {{item.subscribe_count}}人订阅

    IF:{{item.impact_factor}}

    {{item.title}}

A Finite Element Approach for Locating the Center of Resistance of Maxillary Teeth.

上颌牙齿阻力中心定位的有限元方法。

  • 影响因子:1.30
  • DOI:10.3791/60746
  • 作者列表:"Luu B","Cronauer EA","Gandhi V","Kaplan J","Pierce DM","Upadhyay M
  • 发表时间:2020-04-08
Abstract

:The center of resistance (CRES) is regarded as the fundamental reference point for predictable tooth movement. The methods used to estimate the CRES of teeth range from traditional radiographic and physical measurements to in vitro analysis on models or cadaver specimens. Techniques involving finite element analysis of high-dose micro-CT scans of models and single teeth have shown a lot of promise, but little has been done with newer, low-dose, and low resolution cone beam computed tomography (CBCT) images. Also, the CRES for only a few select teeth (i.e., maxillary central incisor, canine, and first molar) have been described; the rest have been largely ignored. There is also a need to describe the methodology of determining the CRES in detail, so that it becomes easy to replicate and build upon. This study used routine CBCT patient images for developing tools and a workflow to obtain finite element models for locating the CRES of maxillary teeth. The CBCT volume images were manipulated to extract three-dimensional (3D) biological structures relevant in determining the CRES of the maxillary teeth by segmentation. The segmented objects were cleaned and converted into a virtual mesh made up tetrahedral (tet4) triangles having a maximum edge length of 1 mm with 3matic software. The models were further converted into a solid volumetric mesh of tetrahedrons with a maximum edge length of 1 mm for use in finite element analysis. The engineering software, Abaqus, was used to preprocess the models to create an assembly and set material properties, interaction conditions, boundary conditions, and load applications. The loads, when analyzed, simulated the stresses and strains on the system, aiding in locating the CRES. This study is the first step in accurate prediction of tooth movement.

摘要

: 阻力中心 (CRES) 被认为是可预测牙齿移动的基本参考点。用于估计牙齿CRES的方法范围从传统的射线照相和物理测量到模型或尸体标本的体外分析。涉及模型和单个牙齿的高剂量微CT扫描的有限元分析的技术已经显示出很多希望,但是对于更新的、低剂量和低分辨率的锥形束计算机断层扫描 (CBCT) 图像几乎没有做。此外,仅描述了少数选定牙齿 (即上颌中切牙、尖牙和第一磨牙) 的CRES; 其余的在很大程度上被忽略。还需要详细描述确定CRES的方法,以便易于复制和构建。本研究使用常规CBCT患者图像开发工具和工作流程,以获得用于定位上颌牙齿CRES的有限元模型。操纵CBCT体积图像以提取与通过分割确定上颌牙齿的CRES相关的三维 (3D) 生物结构。用3个matic软件将分割的对象清洁并转换成由具有1毫米mm的最大边缘长度的四面体 (tet4) 三角形构成的虚拟网格。将模型进一步转换为四面体的实体体积网格,最大边缘长度为1毫米mm,用于有限元分析。使用工程软件Abaqus对模型进行预处理,以创建组件并设置材料属性、相互作用条件、边界条件和载荷应用。分析时,载荷模拟了系统上的应力和应变,有助于定位CRES。本研究是准确预测牙齿移动的第一步。

关键词:
阅读人数:4人
下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:4.08
发表时间:2020-01-01
来源期刊:European radiology
DOI:10.1007/s00330-019-06319-0
作者列表:["Delattre BMA","Boudabbous S","Hansen C","Neroladaki A","Hachulla AL","Vargas MI"]

METHODS:OBJECTIVES:The aim was to evaluate the image quality and sensitivity to artifacts of compressed sensing (CS) acceleration technique, applied to 3D or breath-hold sequences in different clinical applications from brain to knee. METHODS:CS with an acceleration from 30 to 60% and conventional MRI sequences were performed in 10 different applications in 107 patients, leading to 120 comparisons. Readers were blinded to the technique for quantitative (contrast-to-noise ratio or functional measurements for cardiac cine) and qualitative (image quality, artifacts, diagnostic findings, and preference) image analyses. RESULTS:No statistically significant difference in image quality or artifacts was found for each sequence except for the cardiac cine CS for one of both readers and for the wrist 3D proton density (PD)-weighted CS sequence which showed less motion artifacts due to the reduced acquisition time. The contrast-to-noise ratio was lower for the elbow CS sequence but not statistically different in all other applications. Diagnostic findings were similar between conventional and CS sequence for all the comparisons except for four cases where motion artifacts corrupted either the conventional or the CS sequence. CONCLUSIONS:The evaluated CS sequences are ready to be used in clinical daily practice except for the elbow application which requires a lower acceleration. The CS factor should be tuned for each organ and sequence to obtain good image quality. It leads to 30% to 60% acceleration in the applications evaluated in this study which has a significant impact on clinical workflow. KEY POINTS:• Clinical implementation of compressed sensing (CS) reduced scan times of at least 30% with only minor penalty in image quality and no change in diagnostic findings. • The CS acceleration factor has to be tuned separately for each organ and sequence to guarantee similar image quality than conventional acquisition. • At least 30% and up to 60% acceleration is feasible in specific sequences in clinical routine.

翻译标题与摘要 下载文献
影响因子:2.98
发表时间:2020-01-01
DOI:10.1136/neurintsurg-2019-014962
作者列表:["Guo W","Liu H","Tan Z","Zhang X","Gao J","Zhang L","Guo H","Bai H","Cui W","Liu X","Wu X","Luo J","Qu Y"]

METHODS:BACKGROUND:The main surgical techniques for spontaneous basal ganglia hemorrhage include stereotactic aspiration, endoscopic aspiration, and craniotomy. However, credible evidence is still needed to validate the effect of these techniques. OBJECTIVE:To explore the long-term outcomes of the three surgical techniques in the treatment of spontaneous basal ganglia hemorrhage. METHODS:Five hundred and sixteen patients with spontaneous basal ganglia hemorrhage who received stereotactic aspiration, endoscopic aspiration, or craniotomy were reviewed retrospectively. Six-month mortality and the modified Rankin Scale score were the primary and secondary outcomes, respectively. A multivariate logistic regression model was used to assess the effects of different surgical techniques on patient outcomes. RESULTS:For the entire cohort, the 6-month mortality in the endoscopic aspiration group was significantly lower than that in the stereotactic aspiration group (odds ratio (OR) 4.280, 95% CI 2.186 to 8.380); the 6-month mortality in the endoscopic aspiration group was lower than that in the craniotomy group, but the difference was not significant (OR=1.930, 95% CI 0.835 to 4.465). A further subgroup analysis was stratified by hematoma volume. The mortality in the endoscopic aspiration group was significantly lower than in the stereotactic aspiration group in the medium (≥40-<80 mL) (OR=2.438, 95% CI 1.101 to 5.402) and large hematoma subgroup (≥80 mL) (OR=66.532, 95% CI 6.345 to 697.675). Compared with the endoscopic aspiration group, a trend towards increased mortality was observed in the large hematoma subgroup of the craniotomy group (OR=8.721, 95% CI 0.933 to 81.551). CONCLUSION:Endoscopic aspiration can decrease the 6-month mortality of spontaneous basal ganglia hemorrhage, especially in patients with a hematoma volume ≥40 mL.

影响因子:0.96
发表时间:2020-02-01
DOI:10.1002/jcu.22762
作者列表:["Meng L","Zhao D","Yang Z","Wang B"]

METHODS:OBJECTIVE:The primary purpose of this study was to evaluate the effectiveness of a three-dimensional (3D) software tool (smart planes) for displaying fetal brain planes, and the secondary purpose was to evaluate its accuracy in performing automatic measurements. MATERIAL AND METHODS:This prospective study included singleton fetuses with a gestational age (GA) greater than 18 weeks. Transabdominal two-dimensional ultrasound (2DUS) and 3D smart planes images were respectively used to obtain the basic planes of the fetal brain, with five parameters measured. The images, by either two-dimensional (2D) manual or 3D automatic operation, were reviewed by two experienced sonographers. The agreements between two measurements were analyzed. RESULTS:A total of 226 cases were included. The rates of successful detection by automatic display were as high as 80%. There was substantial agreement between the measurements of the biparietal diameter, head circumference and transcerebellar diameter, but poor agreement between the measurements of cisterna magna and lateral ventricle width. CONCLUSIONS:Smart Planes might be valuable for the rapid evaluation of fetal brain, because it simplifies the evaluation process. However, the technology requires improvement. In addition, this technology cannot replace the conventional manual US scans; it can only be used as an additional approach.

翻译标题与摘要 下载文献
三维成像方向

用电子、摄影或其他方法产生三维图像的过程。

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

科研福利

临床科研之家订阅号

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: