小狗阅读会员会员
医学顶刊SCI精读工具

扫码登录小狗阅读

阅读SCI医学文献
Document
订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}

    按需关注领域/方向,精准获取前沿热点

  • {{item.title}}

    {{item.follow}}人关注

  • {{item.subscribe_count}}人订阅

    IF:{{item.impact_factor}}

    {{item.title}}

Reliable estimation of membrane curvature for cryo-electron tomography.

用于低温电子断层成像的膜曲率的可靠估计。

  • 影响因子:4.35
  • DOI:10.1371/journal.pcbi.1007962
  • 作者列表:"Salfer M","Collado JF","Baumeister W","Fernández-Busnadiego R","Martínez-Sánchez A
  • 发表时间:2020-08-10
Abstract

:Curvature is a fundamental morphological descriptor of cellular membranes. Cryo-electron tomography (cryo-ET) is particularly well-suited to visualize and analyze membrane morphology in a close-to-native state and molecular resolution. However, current curvature estimation methods cannot be applied directly to membrane segmentations in cryo-ET, as these methods cannot cope with some of the artifacts introduced during image acquisition and membrane segmentation, such as quantization noise and open borders. Here, we developed and implemented a Python package for membrane curvature estimation from tomogram segmentations, which we named PyCurv. From a membrane segmentation, a signed surface (triangle mesh) is first extracted. The triangle mesh is then represented by a graph, which facilitates finding neighboring triangles and the calculation of geodesic distances necessary for local curvature estimation. PyCurv estimates curvature based on tensor voting. Beside curvatures, this algorithm also provides robust estimations of surface normals and principal directions. We tested PyCurv and three well-established methods on benchmark surfaces and biological data. This revealed the superior performance of PyCurv not only for cryo-ET, but also for data generated by other techniques such as light microscopy and magnetic resonance imaging. Altogether, PyCurv is a versatile open-source software to reliably estimate curvature of membranes and other surfaces in a wide variety of applications.

摘要

: 曲率是细胞膜的基本形态描述符。低温电子断层扫描 (Cryo-ET) 特别适合于以接近天然状态和分子分辨率可视化和分析膜形态。然而,当前的曲率估计方法不能直接应用于cryo-ET中的膜分割,因为这些方法不能处理在图像采集和膜分割期间引入的一些伪影,例如量化噪声和开放边界。在这里,我们开发并实现了一个Python包,用于从断层图像分割中估计膜曲率,我们将其命名为PyCurv。从膜分割,首先提取有符号的表面 (三角形网格)。三角形网格然后由图形表示,这有助于找到相邻三角形和计算局部曲率估计所需的测地距离。PyCurv基于张量投票估计曲率。除了曲率之外,该算法还提供了表面法线和主方向的鲁棒估计。我们在基准表面和生物学数据上测试了PyCurv和三种成熟的方法。这揭示了PyCurv的优越性能,不仅对于冷冻-ET,而且对于通过其他技术例如光学显微镜和磁共振成像产生的数据。总之,PyCurv是一种通用的开源软件,可以在各种应用中可靠地估计膜和其他表面的曲率。

关键词:
阅读人数:2人
下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:4.08
发表时间:2020-01-01
来源期刊:European radiology
DOI:10.1007/s00330-019-06319-0
作者列表:["Delattre BMA","Boudabbous S","Hansen C","Neroladaki A","Hachulla AL","Vargas MI"]

METHODS:OBJECTIVES:The aim was to evaluate the image quality and sensitivity to artifacts of compressed sensing (CS) acceleration technique, applied to 3D or breath-hold sequences in different clinical applications from brain to knee. METHODS:CS with an acceleration from 30 to 60% and conventional MRI sequences were performed in 10 different applications in 107 patients, leading to 120 comparisons. Readers were blinded to the technique for quantitative (contrast-to-noise ratio or functional measurements for cardiac cine) and qualitative (image quality, artifacts, diagnostic findings, and preference) image analyses. RESULTS:No statistically significant difference in image quality or artifacts was found for each sequence except for the cardiac cine CS for one of both readers and for the wrist 3D proton density (PD)-weighted CS sequence which showed less motion artifacts due to the reduced acquisition time. The contrast-to-noise ratio was lower for the elbow CS sequence but not statistically different in all other applications. Diagnostic findings were similar between conventional and CS sequence for all the comparisons except for four cases where motion artifacts corrupted either the conventional or the CS sequence. CONCLUSIONS:The evaluated CS sequences are ready to be used in clinical daily practice except for the elbow application which requires a lower acceleration. The CS factor should be tuned for each organ and sequence to obtain good image quality. It leads to 30% to 60% acceleration in the applications evaluated in this study which has a significant impact on clinical workflow. KEY POINTS:• Clinical implementation of compressed sensing (CS) reduced scan times of at least 30% with only minor penalty in image quality and no change in diagnostic findings. • The CS acceleration factor has to be tuned separately for each organ and sequence to guarantee similar image quality than conventional acquisition. • At least 30% and up to 60% acceleration is feasible in specific sequences in clinical routine.

翻译标题与摘要 下载文献
影响因子:2.98
发表时间:2020-01-01
DOI:10.1136/neurintsurg-2019-014962
作者列表:["Guo W","Liu H","Tan Z","Zhang X","Gao J","Zhang L","Guo H","Bai H","Cui W","Liu X","Wu X","Luo J","Qu Y"]

METHODS:BACKGROUND:The main surgical techniques for spontaneous basal ganglia hemorrhage include stereotactic aspiration, endoscopic aspiration, and craniotomy. However, credible evidence is still needed to validate the effect of these techniques. OBJECTIVE:To explore the long-term outcomes of the three surgical techniques in the treatment of spontaneous basal ganglia hemorrhage. METHODS:Five hundred and sixteen patients with spontaneous basal ganglia hemorrhage who received stereotactic aspiration, endoscopic aspiration, or craniotomy were reviewed retrospectively. Six-month mortality and the modified Rankin Scale score were the primary and secondary outcomes, respectively. A multivariate logistic regression model was used to assess the effects of different surgical techniques on patient outcomes. RESULTS:For the entire cohort, the 6-month mortality in the endoscopic aspiration group was significantly lower than that in the stereotactic aspiration group (odds ratio (OR) 4.280, 95% CI 2.186 to 8.380); the 6-month mortality in the endoscopic aspiration group was lower than that in the craniotomy group, but the difference was not significant (OR=1.930, 95% CI 0.835 to 4.465). A further subgroup analysis was stratified by hematoma volume. The mortality in the endoscopic aspiration group was significantly lower than in the stereotactic aspiration group in the medium (≥40-<80 mL) (OR=2.438, 95% CI 1.101 to 5.402) and large hematoma subgroup (≥80 mL) (OR=66.532, 95% CI 6.345 to 697.675). Compared with the endoscopic aspiration group, a trend towards increased mortality was observed in the large hematoma subgroup of the craniotomy group (OR=8.721, 95% CI 0.933 to 81.551). CONCLUSION:Endoscopic aspiration can decrease the 6-month mortality of spontaneous basal ganglia hemorrhage, especially in patients with a hematoma volume ≥40 mL.

影响因子:0.96
发表时间:2020-02-01
DOI:10.1002/jcu.22762
作者列表:["Meng L","Zhao D","Yang Z","Wang B"]

METHODS:OBJECTIVE:The primary purpose of this study was to evaluate the effectiveness of a three-dimensional (3D) software tool (smart planes) for displaying fetal brain planes, and the secondary purpose was to evaluate its accuracy in performing automatic measurements. MATERIAL AND METHODS:This prospective study included singleton fetuses with a gestational age (GA) greater than 18 weeks. Transabdominal two-dimensional ultrasound (2DUS) and 3D smart planes images were respectively used to obtain the basic planes of the fetal brain, with five parameters measured. The images, by either two-dimensional (2D) manual or 3D automatic operation, were reviewed by two experienced sonographers. The agreements between two measurements were analyzed. RESULTS:A total of 226 cases were included. The rates of successful detection by automatic display were as high as 80%. There was substantial agreement between the measurements of the biparietal diameter, head circumference and transcerebellar diameter, but poor agreement between the measurements of cisterna magna and lateral ventricle width. CONCLUSIONS:Smart Planes might be valuable for the rapid evaluation of fetal brain, because it simplifies the evaluation process. However, the technology requires improvement. In addition, this technology cannot replace the conventional manual US scans; it can only be used as an additional approach.

翻译标题与摘要 下载文献
三维成像方向

用电子、摄影或其他方法产生三维图像的过程。

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: