小狗阅读会员会员
医学顶刊SCI精读工具

扫码登录小狗阅读

阅读SCI医学文献
Document
订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}

    按需关注领域/方向,精准获取前沿热点

  • {{item.title}}

    {{item.follow}}人关注

  • {{item.subscribe_count}}人订阅

    IF:{{item.impact_factor}}

    {{item.title}}

Lung Innate Lymphoid Cell Composition Is Altered in Primary Graft Dysfunction.

原发性移植物功能障碍时肺固有淋巴样细胞组成改变。

  • 影响因子:5.24
  • DOI:10.1164/rccm.201906-1113OC
  • 作者列表:"Monticelli LA","Diamond JM","Saenz SA","Tait Wojno ED","Porteous MK","Cantu E","Artis D","Christie JD
  • 发表时间:2020-01-01
Abstract

:Rationale: Primary graft dysfunction (PGD) is the leading cause of early morbidity and mortality after lung transplantation, but the immunologic mechanisms are poorly understood. Innate lymphoid cells (ILC) are a heterogeneous family of immune cells regulating pathologic inflammation and beneficial tissue repair. However, whether changes in donor-derived lung ILC populations are associated with PGD development has never been examined.Objectives: To determine whether PGD in chronic obstructive pulmonary disease or interstitial lung disease transplant recipients is associated with alterations in ILC subset composition within the allograft.Methods: We performed a single-center cohort study of lung transplantation patients with surgical biopsies of donor tissue taken before, and immediately after, allograft reperfusion. Donor immune cells from 18 patients were characterized phenotypically by flow cytometry for single-cell resolution of distinct ILC subsets. Changes in the percentage of ILC subsets with reperfusion or PGD (grade 3 within 72 h) were assessed.Measurements and Main Results: Allograft reperfusion resulted in significantly decreased frequencies of natural killer cells and a trend toward reduced ILC populations, regardless of diagnosis (interstitial lung disease or chronic obstructive pulmonary disease). Seven patients developed PGD (38.9%), and PGD development was associated with selective reduction of the ILC2 subset after reperfusion. Conversely, patients without PGD exhibited significantly higher ILC1 frequencies before reperfusion, accompanied by elevated ILC2 frequencies after allograft reperfusion.Conclusions: The composition of donor ILC subsets is altered after allograft reperfusion and is associated with PGD development, suggesting that ILCs may be involved in regulating lung injury in lung transplant recipients.

摘要

: 基本原理: 原发性移植物功能障碍 (PGD) 是肺移植后早期发病率和死亡率的主要原因,但免疫机制知之甚少。固有淋巴细胞 (ILC) 是一个异质性的免疫细胞家族,调节病理性炎症和有益的组织修复。然而,供体来源的肺 ILC 人群的变化是否与 PGD 发生相关从未被检查过。目的: 确定慢性阻塞性肺疾病或间质性肺病移植受者的 PGD 是否与同种异体移植物内 ILC 亚群组成的改变相关。方法:我们对肺移植患者进行了一项单中心队列研究,在同种异体移植再灌注之前和之后立即进行了供体组织的外科活检。通过流式细胞术对 18 例患者的供体免疫细胞进行表型表征,以获得不同 ILC 亚群的单细胞分辨率。评估再灌注或 PGD (72 h 内 3 级) ILC 亚群百分比的变化。测量和主要结果: 无论诊断 (间质性肺病或慢性阻塞性肺病) 如何,同种异体移植物再灌注导致自然杀伤细胞频率显著降低,ILC 种群数量有减少的趋势。7 例患者发生 PGD (38.9%),PGD 发生与再灌注后 ILC2 亚群选择性减少相关。相反,无 PGD 的患者在再灌注前表现出显著较高的 ILC1 频率,伴随着同种异体移植物再灌注后 ILC2 频率的升高。结论: 供体 ILC 亚群组成在移植肺再灌注后发生改变,并与 PGD 的发生有关,提示 ILC 可能参与肺移植受者肺损伤的调节。

下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:6.12
发表时间:2020-01-01
DOI:10.1111/bph.14861
作者列表:["De Cunto G","Brancaleone V","Riemma MA","Cerqua I","Vellecco V","Spaziano G","Cavarra E","Bartalesi B","D'Agostino B","Lungarella G","Cirino G","Lucattelli M","Roviezzo F"]

METHODS:BACKGROUND AND PURPOSE:A critical role for sphingosine kinase/sphingosine-1-phosphate (S1P) pathway in the control of airway function has been demonstrated in respiratory diseases. Here, we address S1P contribution in a mouse model of mild chronic obstructive pulmonary disease (COPD). EXPERIMENTAL APPROACH:C57BL/6J mice have been exposed to room air or cigarette smoke up to 11 months and killed at different time points. Functional and molecular studies have been performed. KEY RESULTS:Cigarette smoke caused emphysematous changes throughout the lung parenchyma coupled to a progressive collagen deposition in both peribronchiolar and peribronchial areas. The high and low airways showed an increased reactivity to cholinergic stimulation and α-smooth muscle actin overexpression. Similarly, an increase in airway reactivity and lung resistances following S1P challenge occurred in smoking mice. A high expression of S1P, Sph-K2 , and S1P receptors (S1P2 and S1P3 ) has been detected in the lung of smoking mice. Sphingosine kinases inhibition reversed the increased cholinergic response in airways of smoking mice. CONCLUSIONS AND IMPLICATIONS:S1P signalling up-regulation follows the disease progression in smoking mice and is involved in the development of airway hyperresponsiveness. Our study defines a therapeutic potential for S1P inhibitors in management of airways hyperresponsiveness associated to emphysema in smokers with both asthma and COPD.

关键词: 暂无
翻译标题与摘要 下载文献
影响因子:3.94
发表时间:2020-01-15
DOI:10.1016/j.taap.2019.114847
作者列表:["Bernstein DM","Toth B","Rogers RA","Kling DE","Kunzendorf P","Phillips JI","Ernst H"]

METHODS::The interim results from this 90-day multi-dose, inhalation toxicology study with life-time post-exposure observation has shown an important fundamental difference in persistence and pathological response in the lung between brake dust derived from brake-pads manufactured with chrysotile, TiO2 or chrysotile alone in comparison to the amphiboles, crocidolite and amosite asbestos. In the brake dust exposure groups no significant pathological response was observed at any time. Slight macrophage accumulation of particles was noted. Wagner-scores, were from 1 to 2 (1 = air-control group) and were similar to the TiO2 group. Chrysotile being biodegradable, shows a weakening of its matrix and breaking into short fibers & particles that can be cleared by alveolar macrophages and continued dissolution. In the chrysotile exposure groups, particle laden macrophage accumulation was noted leading to a slight interstitial inflammatory response (Wagner-score 1-3). There was no peribronchiolar inflammation and occasional very slight interstitial fibrosis. The histopathology and the confocal analyses clearly differentiate the pathological response from amphibole asbestos, crocidolite and amosite, compared to that from the brake dust and chrysotile. Both crocidolite and amosite induced persistent inflammation, microgranulomas, and fibrosis (Wagner-scores 4), which persisted through the post exposure period. The confocal microscopy of the lung and snap-frozen chestwalls quantified the extensive inflammatory response and collagen development in the lung and on the visceral and parietal surfaces. The interim results reported here, provide a clear basis for differentiating the effects from brake dust exposure from those following amphibole asbestos exposure. The subsequent results through life-time post-exposure will follow.

关键词: 暂无
翻译标题与摘要 下载文献
影响因子:4.04
发表时间:2020-01-10
DOI:10.1042/BST20191010
作者列表:["Zaragosi LE","Deprez M","Barbry P"]

METHODS::The respiratory tract is lined by a pseudo-stratified epithelium from the nose to terminal bronchioles. This first line of defense of the lung against external stress includes five main cell types: basal, suprabasal, club, goblet and multiciliated cells, as well as rare cells such as ionocytes, neuroendocrine and tuft/brush cells. At homeostasis, this epithelium self-renews at low rate but is able of fast regeneration upon damage. Airway epithelial cell lineages during regeneration have been investigated in the mouse by genetic labeling, mainly after injuring the epithelium with noxious agents. From these approaches, basal cells have been identified as progenitors of club, goblet and multiciliated cells, but also of ionocytes and neuroendocrine cells. Single-cell RNA sequencing, coupled to lineage inference algorithms, has independently allowed the establishment of comprehensive pictures of cell lineage relationships in both mouse and human. In line with genetic tracing experiments in mouse trachea, studies using single-cell RNA sequencing (RNAseq) have shown that basal cells first differentiate into club cells, which in turn mature into goblet cells or differentiate into multiciliated cells. In the human airway epithelium, single-cell RNAseq has identified novel intermediate populations such as deuterosomal cells, 'hybrid' mucous-multiciliated cells and progenitors of rare cells. Novel differentiation dynamics, such as a transition from goblet to multiciliated cells have also been discovered. The future of cell lineage relationships in the respiratory tract now resides in the combination of genetic labeling approaches with single-cell RNAseq to establish, in a definitive manner, the hallmarks of cellular lineages in normal and pathological situations.

翻译标题与摘要 下载文献
方向

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: