扫码登录小狗阅读
How I manage cyclic thrombocytopenia.
我如何处理周期性血小板减少症。
- 影响因子:7.27
- DOI:10.1182/blood.2020008218
- 作者列表:"Kyrle PA","Eichinger S
- 发表时间:2021-01-14
Abstract
:Cyclic thrombocytopenia (CTP) is a rare disease, which is characterized by periodic fluctuation of the platelet count. The pathogenesis of CTP is unknown and most likely heterogeneous. Patients with CTP are almost always misdiagnosed as having primary immune thrombocytopenia (ITP). The interval between ITP and CTP diagnosis can be many years. CTP patients often receive ITP-specific therapies including corticosteroids, thrombopoietin receptor agonists, rituximab, and splenectomy, which are followed by a transient increase in platelet count that is wrongly attributed to treatment effect with inevitable "relapse." CTP can be diagnosed by frequent platelet count monitoring, which reveals a typical pattern of periodic platelet cycling. An early diagnosis of CTP will prevent these patients from being exposed to possibly harmful therapies. The bleeding phenotype is usually mild and consists of mucocutaneous bleeding at the time when the platelet count is at its nadir. Severe bleeding from other sites can occur but is rare. Some patients respond to cyclosporine A or to danazol, but most patients do not respond to any therapy. CTP can be associated with hematological malignancies or disorders of the thyroid gland. Nevertheless, spontaneous remissions can occur, even after many years.
摘要
: 周期性血小板减少 (CTP) 是一种罕见疾病,其特征是血小板计数的周期性波动。CTP的发病机制是未知的,并且很可能是异质性的。CTP患者几乎总是被误诊为原发性免疫性血小板减少症 (ITP)。ITP和CTP诊断之间的间隔可以是多年。CTP患者通常接受ITP特异性治疗,包括皮质类固醇、血小板生成素受体激动剂、利妥昔单抗和脾切除术,随后血小板计数短暂增加,这被错误地归因于治疗效果,不可避免地 “复发”。CTP可以通过频繁的血小板计数监测来诊断,这揭示了周期性血小板循环的典型模式。CTP的早期诊断将防止这些患者暴露于可能有害的疗法。出血表型通常是轻度的,由血小板计数处于最低点时的皮肤黏膜出血组成。其他部位可发生严重出血,但罕见。一些患者对环孢素a或达那唑有反应,但大多数患者对任何治疗都没有反应。CTP可与血液恶性肿瘤或甲状腺疾病相关。然而,即使在许多年后,也可能发生自发缓解。
小狗阅读
帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。
METHODS::The ATP binding-cassette superfamily corresponds the mostly transmembrane transporters family found in humans. These proteins actively transport endogenous and exogenous substrates through biological membranes in body tissues, so they have an important role in the regulation of many physiological functions necessary for human homeostasis, as well as in response regulation to several pharmacological substrates. The development of multidrug resistance has become one of the main troubles in conventional chemotherapy in different illnesses including cancer, being the increased efflux of antineoplastic drugs the main reason for this multidrug resistance, with a key role of the ABC superfamily. Likely, the interindividual variability in the pharmacological response among patients is well known, and may be due to intrinsically factors of the disease, genetic and environmental ones. Thus, the understanding of this variability, especially the genetic variability associated with the efficacy and toxicity of drugs, can provide a safer and more effective pharmacological treatment, so ABC genes are considered as important regulators due to their relationship with the reduction in pharmacological response. In this review, updated information about transporters belonging to this superfamily was collected, the possible role of these transporters in cancer, the role of genetic variability in their genes, as well as some therapeutic tools that have been tried to raise against main transporters associated with chemoresistance in cancer.
METHODS:BACKGROUND:Cholinergic neurotransmission regulates neuroinflammation in Parkinson disease (PD). RESEARCH DESIGN AND METHODS:The authors conducted a delayed-start study of donepezil for cognitive decline in non-demented PD patients. The study consisted of a 96-week randomized placebo-controlled double-blind phase 1, followed by a 24-week donepezil extension phase 2. The primary outcome measure was a change in the Mini-Mental State Examination (MMSE) at week 120. RESULTS:A total of 98 patients were randomly allocated to the early-start (donepezil-to-donepezil) and delayed-start (placebo-to-donepezil) groups. Mean (SD) of the baseline MMSE was 27.6 (2.0) and 28.0 (2.1), respectively. MMSE change at week 120 was better in the early-start group than in the delayed-start group, but the difference was not significant. The MMSE declined in apolipoprotein ε4 carriers, but not in non-carriers, and the factor interaction (intervention × ε4 genotype) was highly significant (P < 0.001). Analyzed with the interaction, the difference was significant (group difference 1.95 [0.33 to 3.57], P = 0.018). The MMSE decline slope in phase 1 was significantly better in the early-start group than in the delayed-start group (P = 0.048). CONCLUSIONS:Cognitive function deteriorated in ε4 carriers, but not in non-carriers, and early-start donepezil may postpone cognitive decline in the former.
METHODS::Since the discovery of dental pulp stem cells, a lot of teams have expressed an interest in dental pulp regeneration. Many approaches, experimental models and biological explorations have been developed, each including the use of stem cells and scaffolds with the final goal being clinical application in humans. In this review, the authors' objective was to compare the experimental models and strategies used for the development of biomaterials for tissue engineering of dental pulp with stem cells. Electronic queries were conducted on PubMed using the following terms: pulp regeneration, scaffold, stem cells, tissue engineering and biomaterial. The extracted data included the following information: the strategy envisaged, the type of stem cells, the experimental models, the exploration or analysis methods, the cytotoxicity or viability or proliferation cellular tests, the tests of scaffold antibacterial properties and take into account the vascularization of the regenerated dental pulp. From the 71 selected articles, 59% focused on the "cell-transplantation" strategy, 82% used in vitro experimentation, 58% in vivo animal models and only one described an in vivo in situ human clinical study. 87% used dental pulp stem cells. A majority of the studies reported histology (75%) and immunohistochemistry explorations (66%). 73% mentioned the use of cytotoxicity, proliferation or viability tests. 48% took vascularization into account but only 6% studied the antibacterial properties of the scaffolds. This article gives an overview of the methods used to regenerate dental pulp from stem cells and should help researchers create the best development strategies for research in this field.