Wing: A suitable nonlethal tissue type for repeatable and rapid telomere length estimates in bats.

Wing: 蝙蝠端粒长度可重复快速估计的合适非致死组织类型。

  • 影响因子:7.01
  • DOI:10.1111/1755-0998.13276
  • 作者列表:"Power ML","Power S","Bertelsen MF","Jones G","Teeling EC
  • 发表时间:2021-02-01

:Telomeres are used increasingly in ecology and evolution as biomarkers for ageing and environmental stress, and are typically measured from DNA extracted from nonlethally sampled blood. However, obtaining blood is not always possible in field conditions and only limited amounts can be taken from small mammals, such as bats, which moreover lack nucleated red blood cells and hence yield relatively low amounts of DNA. As telomere length can vary within species according to age and tissue, it is important to determine which tissues serve best as a representation of the organism as a whole. Here, we investigated whether wing tissue biopsies, a rapid and relatively noninvasive tissue collection method, could serve as a proxy for other tissues when measuring relative telomere length (rTL) in the Egyptian fruit bat (Rousettus aegyptiacus). Telomeres were measured from blood, brain, heart, kidney, liver lung, muscle and wing, and multiple wing biopsies were taken from the same individuals to determine intra-individual repeatability of rTL measured by using qPCR. Wing rTL correlated with rTL estimates from most tissues apart from blood. Blood rTL was not significantly correlated with rTL from any other tissue. Blood and muscle rTLs were significantly longer compared with other tissues, while lung displayed the shortest rTLs. Individual repeatability of rTL measures from wing tissue was high (>70%). Here we show the relationships between tissue telomere dynamics for the first time in a bat, and our results provide support for the use of wing tissue for rTL measurements.


: 端粒在生态学和进化中越来越多地用作衰老和环境压力的生物标志物,并且通常从从非致死取样的血液中提取的DNA中测量。然而,在野外条件下获得血液并不总是可能的,并且只能从小型哺乳动物 (例如蝙蝠) 获得有限的量,这些哺乳动物此外缺乏有核红细胞,因此产生相对较低量的DNA。由于端粒长度可以根据年龄和组织在物种内变化,因此确定哪些组织最适合作为生物体整体的代表是重要的。在这里,我们研究了在测量埃及果蝠 (Rousettus aegyptiacus) 的相对端粒长度 (rTL) 时,翼组织活检 (一种快速且相对无创的组织采集方法) 是否可以作为其他组织的代理。从血液、脑、心脏、肾、肝、肺、肌肉和翼测量端粒,并且从相同个体获取多个翼活检以确定通过使用qPCR测量的rTL的个体内可重复性。Wing rTL与来自除血液之外的大多数组织的rTL估计值相关。血液rTL与来自任何其他组织的rTL不显著相关。与其他组织相比,血液和肌肉rTLs显著更长,而肺显示最短的rTLs。来自翼组织的rTL测量的个体可重复性高 (>70%)。在这里,我们首次在蝙蝠中展示了组织端粒动力学之间的关系,我们的结果为使用翼组织进行rTL测量提供了支持。



作者列表:["Juan-Carlos PM","Perla-Lidia PP","Stephanie-Talia MM","Mónica-Griselda AM","Luz-María TE"]

METHODS::The ATP binding-cassette superfamily corresponds the mostly transmembrane transporters family found in humans. These proteins actively transport endogenous and exogenous substrates through biological membranes in body tissues, so they have an important role in the regulation of many physiological functions necessary for human homeostasis, as well as in response regulation to several pharmacological substrates. The development of multidrug resistance has become one of the main troubles in conventional chemotherapy in different illnesses including cancer, being the increased efflux of antineoplastic drugs the main reason for this multidrug resistance, with a key role of the ABC superfamily. Likely, the interindividual variability in the pharmacological response among patients is well known, and may be due to intrinsically factors of the disease, genetic and environmental ones. Thus, the understanding of this variability, especially the genetic variability associated with the efficacy and toxicity of drugs, can provide a safer and more effective pharmacological treatment, so ABC genes are considered as important regulators due to their relationship with the reduction in pharmacological response. In this review, updated information about transporters belonging to this superfamily was collected, the possible role of these transporters in cancer, the role of genetic variability in their genes, as well as some therapeutic tools that have been tried to raise against main transporters associated with chemoresistance in cancer.

翻译标题与摘要 下载文献
作者列表:["Sawada H","Oeda T","Kohsaka M","Tomita S","Umemura A","Park K","Yamamoto K","Kiyohara K"]

METHODS:BACKGROUND:Cholinergic neurotransmission regulates neuroinflammation in Parkinson disease (PD). RESEARCH DESIGN AND METHODS:The authors conducted a delayed-start study of donepezil for cognitive decline in non-demented PD patients. The study consisted of a 96-week randomized placebo-controlled double-blind phase 1, followed by a 24-week donepezil extension phase 2. The primary outcome measure was a change in the Mini-Mental State Examination (MMSE) at week 120. RESULTS:A total of 98 patients were randomly allocated to the early-start (donepezil-to-donepezil) and delayed-start (placebo-to-donepezil) groups. Mean (SD) of the baseline MMSE was 27.6 (2.0) and 28.0 (2.1), respectively. MMSE change at week 120 was better in the early-start group than in the delayed-start group, but the difference was not significant. The MMSE declined in apolipoprotein ε4 carriers, but not in non-carriers, and the factor interaction (intervention × ε4 genotype) was highly significant (P < 0.001). Analyzed with the interaction, the difference was significant (group difference 1.95 [0.33 to 3.57], P = 0.018). The MMSE decline slope in phase 1 was significantly better in the early-start group than in the delayed-start group (P = 0.048). CONCLUSIONS:Cognitive function deteriorated in ε4 carriers, but not in non-carriers, and early-start donepezil may postpone cognitive decline in the former.

翻译标题与摘要 下载文献
作者列表:["Louvrier A","Terranova L","Meyer C","Meyer F","Euvrard E","Kroemer M","Rolin G"]

METHODS::Since the discovery of dental pulp stem cells, a lot of teams have expressed an interest in dental pulp regeneration. Many approaches, experimental models and biological explorations have been developed, each including the use of stem cells and scaffolds with the final goal being clinical application in humans. In this review, the authors' objective was to compare the experimental models and strategies used for the development of biomaterials for tissue engineering of dental pulp with stem cells. Electronic queries were conducted on PubMed using the following terms: pulp regeneration, scaffold, stem cells, tissue engineering and biomaterial. The extracted data included the following information: the strategy envisaged, the type of stem cells, the experimental models, the exploration or analysis methods, the cytotoxicity or viability or proliferation cellular tests, the tests of scaffold antibacterial properties and take into account the vascularization of the regenerated dental pulp. From the 71 selected articles, 59% focused on the "cell-transplantation" strategy, 82% used in vitro experimentation, 58% in vivo animal models and only one described an in vivo in situ human clinical study. 87% used dental pulp stem cells. A majority of the studies reported histology (75%) and immunohistochemistry explorations (66%). 73% mentioned the use of cytotoxicity, proliferation or viability tests. 48% took vascularization into account but only 6% studied the antibacterial properties of the scaffolds. This article gives an overview of the methods used to regenerate dental pulp from stem cells and should help researchers create the best development strategies for research in this field.

翻译标题与摘要 下载文献