扫码登录小狗阅读
Fluconazole Represses Cytochrome P450 1B1 and its Associated Arachidonic Acid Metabolites in the Heart and Protects Against Angiotensin II-Induced Cardiac Hypertrophy.
氟康唑抑制心脏中细胞色素 P450 1B1 及其相关的花生四烯酸代谢产物,对血管紧张素 II 诱导的心肌肥厚有保护作用。
- 影响因子:3.46
- DOI:10.1016/j.xphs.2020.03.016
- 作者列表:"Alammari AH","Shoieb SM","Maayah ZH","El-Kadi AOS
- 发表时间:2020-03-30
Abstract
:Cytochrome P450 1B1 (CYP1B1) has been reported to have a major role in metabolizing arachidonic acid (AA) into cardiotoxic metabolites, mid-chain hydroxyeicosatetraenoic acids (HETEs). Recently, we have shown that fluconazole decreases the level of mid-chain HETEs in human liver microsomes. Therefore, the objectives of this study were to investigate the effect of fluconazole on CYP1B1 mediated mid-chain HETEs and to explore its potential protective effect against angiotensin II- (Ang II)-induced cellular hypertrophy. To do this, Sprague Dawley rats were injected intraperitoneally with a single dose of fluconazole (20 mg/kg) for 24 h. Also, H9c2 and RL-14 cells were treated with 10 μM Ang II in the presence and absence of 50 μM fluconazole for 24 h. Our results demonstrated that treatment of rats with fluconazole significantly decreased the expression of CYP1B1 enzyme and the level of mid-chain HETEs in the heart. Furthermore, fluconazole was able to attenuate Ang-II-induced cellular hypertrophy as evidenced by a significant down-regulation of hypertrophic markers; β-myosin heavy chain (MHC)/ α-MHC and brain natriuretic peptide (BNP) as well as cell surface area. In conclusion, our findings indicate that fluconazole protects against Ang II-induced cellular hypertrophy by repressing CYP1B1 and its associated mid-chain HETEs.
摘要
: 据报道,细胞色素 P450 1B1 (CYP1B1) 在花生四烯酸 (AA) 代谢为心脏毒性代谢物,中链羟基二十碳四烯酸 (HETEs) 中发挥主要作用。最近,我们发现氟康唑降低了人肝微粒体中链 HETEs 的水平。因此,本研究的目的是研究氟康唑对 CYP1B1 介导的中链 HETEs 的影响,并探讨其对血管紧张素 II- (Ang II) 的潜在保护作用。-诱导细胞肥大。为此,Sprague Dawley 大鼠腹腔注射单剂量氟康唑 (20 mg/kg) 24 h。在 50 μ m 氟康唑存在和不存在的情况下,用 10 μ m Ang II 处理 H9c2 和 RL-14 细胞 24 h。我们的结果表明,氟康唑治疗大鼠可显著降低心脏 CYP1B1 酶的表达和中链 HETEs 的水平。此外,氟康唑能够减轻 Ang-II 诱导的细胞肥大,表现为肥大标志物的显著下调; Β-肌球蛋白重链 (MHC)/Α-MHC 和脑钠肽 (BNP) 以及细胞表面积。总之,我们的研究结果表明,氟康唑通过抑制 CYP1B1 及其相关的中链 HETEs 来保护 Ang II 诱导的细胞肥大。
小狗阅读
帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。
METHODS:Abstract Background Ischemic cardiomyopathy is a high-cost, resource-intensive public health burden that is associated with a 1-year mortality rate of about 16% in western population. Different in patient ethnicity and pattern of practice may impact the clinical outcome. We aim to determine 1-year mortality and to identify factors that significantly predicts 1-year mortality of Thai patients with ischemic cardiomyopathy. Methods This prospective multicenter registry enrolled consecutive Thai patients that were diagnosed with ischemic cardiomyopathy at 9 institutions located across Thailand. Patients with left ventricular function 75% in the left main or proximal left anterior descending artery or coronary angiography, and/or two major epicardial coronary stenoses; 2) prior myocardial infarction; 3) prior revascularization by coronary artery bypass graft or percutaneous coronary intervention; or, 4) magnetic resonance imaging pattern compatible with ischemic cardiomyopathy. Baseline clinical characteristics, coronary and echocardiographic data were recorded. The 1-year clinical outcome was pre-specified. Results Four hundred and nineteen patients were enrolled. Thirty-nine patients (9.9%) had died at 1 year, with 27 experiencing cardiovascular death, and 12 experiencing non-cardiovascular death. A comparison between patients who were alive and patients who were dead at 1 year revealed lower baseline left ventricular ejection fraction (LVEF) (26.7 ± 7.6% vs 30.2 ± 7.8%; p = 0.021), higher left ventricular end-diastolic volume (LVEDV) (185.8 ± 73.2 ml vs 155.6 ± 64.2 ml; p = 0.014), shorter mitral valve deceleration time (142.9 ± 57.5 ml vs 182.4 ± 85.7 ml; p = 0.041), and lower use of statins (94.7% vs 99.7%; p = 0.029) among deceased patients. Patients receiving guideline-recommended β-blockers had lower mortality than patients receiving non-guideline-recommended β-blockers (8.1% vs 18.2%; p = 0.05). Conclusions The results of this study revealed a 9.9% 1-year mortality rate among Thai ischemic cardiomyopathy patients. Doppler echocardiographic parameters significantly associated with 1-year mortality were LVEF, LVEDV, mitral E velocity, and mitral valve deceleration time. The use of non-guideline-recommended β-blockers rather than guideline recommended β-blockers were associated with increased with 1-year mortality. Guidelines recommended β-blockers should be preferred. Trial registration Thai Clinical Trials Registry TCTR20190722002. Registered 22 July 2019. “Retrospectively registered”.
METHODS:Abstract Background Peripartum cardiomyopathy (PPCM) is rare and potentially life-threatening; its etiology remains unclear. Imaging characteristics on cardiovascular magnetic resonance (CMR) and their prognostic significance have rarely been studied. We sought to determine CMR’s prognostic value in PPCM by using T1 and T2 mapping techniques. Methods Data from 21 PPCM patients from our CMR registry database were analyzed. The control group comprised 20 healthy age-matched females. All subjects underwent comprehensive contrast-enhanced CMR. T1 and T2 mapping using modified Look-Locker inversion recovery and T2 prep balanced steady-state free precession sequences, respectively. Ventricular size and function, late gadolinium enhancement (LGE), myocardial T1 value, extracellular volume (ECV), and T2 value were analyzed. Transthoracic echocardiography was performed at baseline and during follow-up. The recovered left ventricular ejection fraction (LVEF) was defined as LVEF ≥50% on echocardiography follow-up after at least 6 months of the diagnosis. Results CMR imaging showed that the PPCM patients had severely impaired LVEF and right ventricular ejection fraction (LVEF: 26.8 ± 10.6%; RVEF: 33.9 ± 14.6%). LGE was seen in eight (38.1%) cases. PPCM patients had significantly higher native T1 and ECV (1345 ± 79 vs. 1212 ± 32 ms, P < 0.001; 33.9 ± 5.2% vs. 27.1 ± 3.1%, P < 0.001; respectively) and higher myocardial T2 value (42.3 ± 3.7 vs. 36.8 ± 2.3 ms, P < 0.001) than did the normal controls. After a median 2.5-year follow-up (range: 8 months-5 years), six patients required readmission for heart failure, two died, and 10 showed left ventricular function recovery. The LVEF-recovered group showed significantly lower ECV (30.7 ± 2.1% vs. 36.8 ± 5.6%, P = 0.005) and T2 (40.6 ± 3.0 vs. 43.9 ± 3.7 ms, P = 0.040) than the unrecovered group. Multivariable logistic regression analysis showed ECV (OR = 0.58 for per 1% increase, P = 0.032) was independently associated with left ventricular recovery in PPCM. Conclusions Compared to normal controls, PPCM patients showed significantly higher native T1, ECV, and T2. Native T1, ECV, and T2 were associated with LVEF recovery in PPCM. Furthermore, ECV could independently predict left ventricular function recovery in PPCM.
METHODS:BACKGROUND:Atrial fibrillation (AF) is the most common arrhythmia in hypertrophic cardiomyopathy (HCM) and is associated with adverse outcomes in HCM patients. Although the left atrial (LA) diameter has consistently been identified as a strong predictor of AF in HCM patients, the relationship between LA dysfunction and AF still remains unclear. The aim of this study is to evaluate the LA function in patients with non-obstructive HCM (NOHCM) utilizing cardiovascular magnetic resonance feature tracking (CMR-FT).,METHODS:Thirty-three patients with NOHCM and 28 healthy controls were studied. The global and regional LA function and left ventricular (LV) function were compared between the two groups. The following LA global functional parameters were quantitively analyzed: reservoir function (total ejection fraction [LA total EF], total strain [ε], peak positive strain rate [SRs]), conduit function (passive ejection fraction [LA passive EF], passive strain [ε], peak early-negative SR [SRe]), and booster pump function (active ejection fraction [LA active EF], active strain [ε], peak late-negative SR [SRa]). The LA wall was automatically divided into 6 segments: anterior, antero-roof, inferior, septal, septal-roof and lateral. Three LA strain parameters (ε, ε, ε) and their corresponding strain rate parameters (SRs, SRe, SRa) during the reservoir, conduit and booster pump LA phases were segmentally measured and analyzed.,RESULTS:The LA reservoir (LA total EF: 57.6 ± 8.2% vs. 63.9 ± 6.4%, p < 0.01; ε: 35.0 ± 12.0% vs. 41.5 ± 11.2%, p = 0.03; SRs: 1.3 ± 0.4 s vs. 1.5 ± 0.4 s, p = 0.02) and conduit function (LA passive EF: 28.7 ± 9.1% vs. 37.1 ± 10.0%, p < 0.01; ε: 18.7 ± 7.9% vs. 25.9 ± 10.0%, p < 0.01; SRe: - 0.8 ± 0.3 s vs. -1.1 ± 0.4 s, p < 0.01) were all impaired in patients with NOHCM when compared with healthy controls, while LA booster pump function was preserved. The LA segmental strain and strain rate analysis demonstrated that the ε, ε, SRe of inferior, SRs, SRe of septal-roof, and SRa of antero-roof walls (all p < 0.05) were all decreased in the NOHCM cohort. Correlations between LA functional parameters and LV conventional function and LA functional parameters and baseline parameters (age, body surface area and NYHA classification) were weak. The two strongest relations were between ε and LA total EF(r = 0.84, p < 0.01), ε and LA active EF (r = 0.83, p < 0.01).,CONCLUSIONS:Compared with healthy controls, patients with NOHCM have LA reservoir and conduit dysfunction, and regional LA deformation before LA enlargement. CMR-FT identifies LA dysfunction and deformation at an early stage.