扫码登录小狗阅读
Chinese Propolis Prevents Obesity and Metabolism Syndromes Induced by a High Fat Diet and Accompanied by an Altered Gut Microbiota Structure in Mice.
中国蜂胶可预防高脂饮食诱导的肥胖和代谢综合征,并伴有小鼠肠道菌群结构的改变。
- 影响因子:4.51
- DOI:10.3390/nu12040959
- 作者列表:"Zheng Y","Wu Y","Tao L","Chen X","Jones TJ","Wang K","Hu F
- 发表时间:2020-03-30
Abstract
:The increasing incidence of obesity poses a great threat to public health worldwide. Recent reports also indicate the relevance of obesity in metabolic diseases. Chinese propolis (CP), as a well-studied natural nutraceutical, has shown a beneficial effect on alleviating diabetes mellitus. However, few studies have investigated the effect of CP on weight management and energy balance. We examined the beneficial effects of dietary CP on weight in high-fat diet-fed female and male mice and determined whether CP alters gut microbiota. In this study, dietary CP supplementation reduces body weight and improves insulin resistance in high-fat diet (HFD)-fed mice in a dose-dependent manner. CP treatment also reverses liver weight loss and triglyceride accumulation in association with hepatic steatosis. The 16S rRNA analysis of gut microbiota demonstrated that CP treatment modulates the composition in HFD-fed mice. Our study also suggests that male mice were more sensitive to CP treatment than female mice. Taken together, CP supplementation reduces weight gain and reverses gut microbiome dysbiosis induced by HFD. Further, the effects of CP treatment on metabolic biomarkers and microbiome structure differ by gender.
摘要
: 日益增加的肥胖发病率对全球范围内的公众健康构成巨大威胁。最近的报告也表明肥胖在代谢性疾病中的相关性。中国蜂胶 (CP) 作为一种被广泛研究的天然营养品,在缓解糖尿病方面显示出有益的效果。然而,很少有研究调查 CP 对体重管理和能量平衡的影响。我们在高脂饮食喂养的雌性和雄性小鼠中检测了饮食 CP 对体重的有益影响,并确定 CP 是否改变了肠道菌群。在本研究中,膳食补充 CP 可剂量依赖性地降低高脂饮食 (HFD) 喂养小鼠的体重并改善胰岛素抵抗。CP 治疗还可逆转与肝脏脂肪变性相关的肝脏体重减轻和甘油三酯蓄积。肠道菌群的 16S rRNA 分析证明,CP 治疗可调节 HFD 喂养小鼠的组成。我们的研究还表明,雄性小鼠比雌性小鼠对 CP 治疗更敏感。总之,补充 CP 可减少体重增加,逆转 HFD 诱导的肠道微生物菌群失调。此外,CP 治疗对代谢生物标志物和微生物组结构的影响因性别而异。
小狗阅读
帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。
METHODS:Maintaining adequate daily protein intake is important to maintain muscle mass throughout the lifespan. In this regard, the overnight period has been identified as a window of opportunity to increase protein intake in the elderly. However, it is unknown whether pre-sleep protein intake affects next-morning appetite and, consequently, protein intake. Therefore, the purpose of the current study was to investigate the effects of a pre-sleep protein drink on next-morning appetite, energy intake and metabolism. Twelve older individuals (eight males, four females; age: 71.3 ± 4.2 years) took part in a single-blind randomised cross-over study. After a standardised dinner, participants consumed either a 40-g protein drink, isocaloric maltodextrin drink, or placebo water control before bedtime. Next-morning appetite, energy intake, resting metabolic rate (RMR), respiratory exchange rate (RER), and plasma acylated ghrelin, leptin, glucose, and insulin concentrations were assessed. No between-group differences were observed for appetite and energy intake at breakfast. Furthermore, RMR, RER, and assessed blood markers were not significantly different between any of the treatment groups. Pre-sleep protein intake does not affect next-morning appetite and energy intake and is therefore a viable strategy to increase daily protein intake in an older population.
METHODS:Leptin (LEP) regulates glucose metabolism and energy storage in the body. Osteoarthritis (OA) is associated with the upregulation of serum LEP. LEP promoter methylation is associated with obesity. So far, few studies have explored the association of BMI and OA with LEP methylation. We assessed the interaction between body mass index (BMI) and OA on LEP promoter methylation. Data of 1114 participants comprising 583 men and 558 women, aged 30−70 years were retrieved from the Taiwan Biobank Database (2008−2015). Osteoarthritis was self-reported and cases were those who reported having ever been clinically diagnosed with osteoarthritis. BMI was categorized into underweight, normal weight, overweight, and obesity. The mean LEP promoter methylation level in individuals with osteoarthritis was 0.5509 ± 0.00437 and 0.5375 ± 0.00101 in those without osteoarthritis. The interaction between osteoarthritis and BMI on LEP promoter methylation was significant (p-value = 0.0180). With normal BMI as the reference, the mean LEP promoter methylation level was significantly higher in obese osteoarthritic individuals (β = 0.03696, p-value = 0.0187). However, there was no significant association between BMI and LEP promoter methylation in individuals without osteoarthritis, regardless of BMI. In conclusion, only obesity was significantly associated with LEP promoter methylation (higher levels) specifically in osteoarthritic patients.
METHODS:Background For the same BMI, South Asians have a higher body fat percentage, a higher liver fat content and a more adverse metabolic profile than whites. South Asians may have a lower fat oxidation than whites, which could result in an unfavorable metabolic profile when exposed to increased high-fat foods consumption and decreased physical activity as in current modern lifestyle. Objective To determine substrate partitioning, liver fat accumulation and metabolic profile in South Asian and white men in response to overfeeding with high-fat diet under sedentary conditions in a respiration chamber. Design Ten South Asian men (BMI, 18–29 kg/m^2) and 10 white men (BMI, 22–33 kg/m^2), matched for body fat percentage, aged 20–40 year were included. A weight maintenance diet (30% fat, 55% carbohydrate, and 15% protein) was given for 3 days. Thereafter, a baseline measurement of liver fat content (1H-MRS) and blood parameters was performed. Subsequently, subjects were overfed (150% energy requirement) with a high-fat diet (60% fat, 25% carbohydrate, and 15% protein) over 3 consecutive days while staying in a respiration chamber mimicking a sedentary lifestyle. Energy expenditure and substrate use were measured for 3 × 24-h. Liver fat and blood parameters were measured again after the subjects left the chamber. Results The 24-h fat oxidation as a percentage of total energy expenditure did not differ between ethnicities ( P = 0.30). Overfeeding increased liver fat content ( P = 0.02), but the increase did not differ between ethnicities ( P = 0.64). In South Asians, overfeeding tended to increase LDL-cholesterol ( P = 0.08), tended to decrease glucose clearance ( P = 0.06) and tended to elevate insulin response ( P = 0.07) slightly more than whites. Conclusions Despite a similar substrate partitioning and similar accretion of liver fat, overfeeding with high-fat under sedentary conditions tended to have more adverse effects on the lipid profile and insulin sensitivity in South Asians.