小狗阅读会员会员
有解析的医学SCI阅读工具

扫码登录小狗阅读

阅读SCI医学文献

ID1 confers cancer cell chemoresistance through STAT3/ATF6-mediated induction of autophagy.

ID1 通过 STAT3/ATF6-mediated 诱导自噬赋予癌细胞化疗耐药性。

  • 影响因子:5.9590
  • DOI:10.1038/s41419-020-2327-1
  • 作者列表:"Meng J","Liu K","Shao Y","Feng X","Ji Z","Chang B","Wang Y","Xu L","Yang G
  • 发表时间:2020-02-20
Abstract

:Chemoresistance is one of the major reasons leading to ovarian cancer high mortality and poor survival. Studies have shown that the alteration of cellular autophagy is associated with cancer cell chemoresistance. Here, we investigated whether the ovarian cancer chemoresistance is associated with the autophagy induced by the inhibitor of DNA binding 1 (ID1). By using gene overexpression or silencing, luciferase assay and human specimens, we show that ID1 induces high autophagy and confers cancer cell chemoresistance. The mechanistic study demonstrates that ID1 first activates the NF-κB signaling through facilitating the nuclear translocation of NF-κB p65, which strengthens the expression and secretion of IL-6 from cancer cells to subsequently activate the signal transducer and activator of transcription 3 (STAT3) through the protein phosphorylation at Y705. We further identified that STAT3 functions to promote the transcription of the activating transcription factor 6 (ATF6), which induces endoplasmic reticulum stress to promote cellular autophagy, granting cancer cell resistance to both cisplatin and paclitaxel treatment. Moreover, we found a significant correlation between the expression of ID1 and ATF6 in 1104 high grade serous ovarian cancer tissues, and that patients with the high expression of ID1 or ATF6 were resistant to platinum treatment and had the poor overall survival and progression-free survival. Thus, we have uncovered a mechanism in which ID1 confers cancer cell chemoresistance largely through the STAT3/ATF6-induced autophagy. The involved molecules, including ID1, STAT3, and ATF6, may have a potential to be targeted in combination with chemotherapeutic agents to improve ovarian cancer survival.

摘要

: 化疗耐药是导致卵巢癌高死亡率和生存率差的主要原因之一。研究表明,细胞自噬的改变与癌细胞的化疗耐药性有关。在这里,我们研究了卵巢癌化疗耐药是否与 DNA 结合抑制剂 1 (ID1) 诱导的自噬相关。通过使用基因过表达或沉默、荧光素酶检测和人类标本,我们发现 ID1 诱导高自噬并赋予癌细胞化疗耐药性。机制研究表明,ID1 首先通过促进 NF-κ b p65 的核转位激活 NF-κ b 信号, 这加强了癌细胞 IL-6 的表达和分泌,随后通过 y705 的蛋白磷酸化激活信号转导子和转录激活子 3 (STAT3)。我们进一步鉴定了 STAT3 的功能是促进激活转录因子 6 (ATF6) 的转录,ATF6 诱导内质网应激促进细胞自噬, 给予癌细胞对顺铂和紫杉醇治疗的耐药性。此外,我们发现 ID1 和 ATF6 在 1104 例高级别浆液性卵巢癌组织中的表达存在显著相关性, ID1 或 ATF6 高表达的患者对铂类治疗耐药,总生存期和无进展生存期较差。因此,我们发现了 ID1 在很大程度上通过 STAT3/ATF6-induced 自噬赋予癌细胞化疗耐药性的机制。涉及的分子,包括 ID1 、 STAT3 和 ATF6,可能有可能与化疗药物联合靶向提高卵巢癌生存率。

关键词:
阅读人数:6人
下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:3.17
发表时间:2020-01-30
DOI:10.1111/jhn.12736
作者列表:["Hone M","Nugent AP","Walton J","McNulty BA","Egan B"]

METHODS:BACKGROUND:Given the importance of habitual dietary protein intake, distribution patterns and dietary sources in the aetiology of age-related declines of muscle mass and function, the present study examined these factors as a function of sex and age in Irish adults aged 18-90 years comprising The National Adult Nutrition Survey (NANS). METHODS:In total, 1051 (males, n = 523; females, n = 528) undertook a 4-day semi-weighed food diary. Total, body mass relative intake and percentage contribution to total energy intake of dietary protein were determined in addition to protein distribution scores (PDS), as well as the contribution of food groups, animal- and plant-based foods to total protein intake. RESULTS:Total and relative protein intake [mean (SD)] were highest in those aged 18-35 years [96 (3) g day , 1.32 (0.40) g kg day ], with lower protein intakes with increasing age (i.e. in adults aged ≥65 years [82 (22) g, 1.15 (0.34) g kg day , P < 0.001 for both]. Differences in protein intake between age groups were more pronounced in males compared to females. Protein distribution followed a skewed pattern for all age groups [breakfast, 15 (10) g; lunch, 30 (15) g; dinner, 44 (17) g]. Animal-based foods were the dominant protein source within the diet [63% (11%) versus 37% (11%) plant protein, P < 0.001]. CONCLUSIONS:Protein intake and the number of meals reaching the purported threshold for maximising post-prandial anabolism were highest in young adults, and lower with increasing age. For main meals, breakfast provided the lowest quantity of protein across all age categories and may represent an opportunity for improving protein distribution, whereas, in older adults, increasing the number of meals reaching the anabolic threshold regardless of distribution pattern may be more appropriate.

翻译标题与摘要 下载文献
影响因子:2.76
发表时间:2020-01-30
DOI:10.1152/japplphysiol.00631.2019
作者列表:["Bonomi AG","Ten Hoor GA","De Morree HM","Plasqui G","Sartor F"]

METHODS:BACKGROUND:Low cardiorespiratory fitness (CRF) increases risk of all-cause mortality and cardiovascular events. Periodic CRF assessment can have an important preventive function. OBJECTIVE:To develop a protocol-free method to estimate CRF in daily life based on heart rate (HR) and body acceleration measurements. METHODS:Acceleration and HR data were collected from 37 subjects (M=49%) while performing a standardized laboratory activity protocol (sitting, walking, running, cycling) and during a 5-days free-living monitoring period. CRF was determined by oxygen uptake (VO2max) during maximal exercise testing. A doubly-labeled water validated equation was used to predict total energy expenditure (TEE) from acceleration data. A fitness index was defined as the ratio between TEE and HR (TEE-pulse). Activity recognition techniques were used to process acceleration features and classify sedentary, ambulatory and other activity types. Regression equations based on TEE-pulse data from each activity type were developed to predict VO2max. RESULTS:TEE-pulse measured within each activity type of the laboratory protocol was highly correlated to VO2max (r from 0.74 to 0.91). Averaging the outcome of each activity-type specific equation based on TEE-pulse from the laboratory data led to accurate estimates of VO2max (RMSE: 300.0 mlO2/min or 10%). The difference between laboratory and free-living determined TEE-pulse was 3.7 ± 11% (r =0.85). The prediction method preserved the prediction accuracy when applied to free-living data (RMSE: 367 mlO2/min or 12%). CONCLUSIONS:Measurements of body acceleration and HR can be used to predict VO2max in daily life. Activity-specific prediction equations are needed to achieve highly accurate estimates of CRF.

翻译标题与摘要 下载文献
影响因子:3.76
发表时间:2020-01-31
DOI:10.1152/ajpgi.00386.2018
作者列表:["Farr S","Stankovic B","Hoffman S","Masoudpoor H","Baker C","Taher J","Dean A","Anakk S","Adeli K"]

METHODS:OBJECTIVE:Postprandial dyslipidemia is a common feature of insulin resistant states and contributes to increased cardiovascular disease risk. Recently, bile acids have been recognized beyond their emulsification properties as important signaling molecules that promote energy expenditure, improve insulin sensitivity, and lower fasting lipemia. While bile acid receptors have become novel pharmaceutical targets, their effects on postprandial lipid metabolism remain unclear. Here we investigated the potential role of bile acids in regulation of postprandial chylomicron production and triglyceride excursion. Approach and Results: Healthy C57BL/6 mice were given an intraduodenal infusion of taurocholic acid (TA) under fat-loaded conditions and circulating lipids were measured. Targeting of bile acid receptors was achieved with GW4064, a synthetic agonist to the farnesoid X receptor (FXR), and with deoxycholic acid (DCA), an activator of the Takeda G-protein-coupled receptor 5. TA, GW4064, and DCA treatments all lowered postprandial lipemia. FXR agonism also reduced intestinal triglyceride content and activity of microsomal triglyceride transfer protein, involved in chylomicron assembly. Importantly, TA effects (but not DCA) were largely lost in FXR knockout mice. These bile acid effects are reminiscent of the anti-diabetic hormone glucagon-like peptide-1 (GLP-1). While the GLP-1 receptor agonist exendin-4 retained its ability to acutely lower postprandial lipemia during bile acid sequestration and FXR deficiency, it did raise hepatic expression of the rate limiting enzyme for bile acid synthesis. CONCLUSIONS:Bile acid signaling may be an important mechanism of controlling dietary lipid absorption and bile acid receptors may constitute novel targets for the treatment of postprandial dyslipidemia.

关键词: 暂无
翻译标题与摘要 下载文献
方向

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

科研福利

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: