订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}


  • {{item.title}}


  • {{item.subscribe_count}}人订阅



Diagnostic and prognostic values of PBMC proteins in amyotrophic lateral sclerosis.

肌萎缩侧索硬化症 PBMC 蛋白的诊断和预后价值。

  • 影响因子:5.36
  • DOI:10.1016/j.nbd.2020.104815
  • 作者列表:"Luotti S","Pasetto L","Porcu L","Torri V","Elezgarai SR","Pantalone S","Filareti M","Corbo M","Lunetta C","Mora G","Bonetto V
  • 发表时间:2020-02-19

:Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which there are no validated biomarkers. Previous exploratory studies have identified a panel of candidate protein biomarkers in peripheral blood mononuclear cells (PBMCs) that include peptidyl-prolyl cis-trans isomerase A (PPIA), heat shock cognate protein 71 kDa (HSC70), heterogeneous nuclear ribonucleoprotein A2/B1 (hnRNPA2B1) and TDP-43. It has also been found that PPIA plays a key role in the assembly and dynamics of ribonucleoprotein (RNP) complexes and interacts with TDP-43. Its absence accelerates disease progression in a SOD1 mouse model of ALS, and low levels of PPIA in PBMCs are associated with early-onset ALS. However, the diagnostic and prognostic values of PPIA and the other candidate protein biomarkers have not been established. We analyzed the PBMC proteins in a well-characterized cohort of ALS patients (n=93), healthy individuals (n=104) and disease controls (n=111). We used a highly controlled sample processing procedure that implies two-step differential detergent fractionation. We found that the levels of the selected PBMC proteins in the soluble and insoluble fraction, combined, have a high discriminatory power for distinguishing ALS from controls, with PPIA, hnRNPA2B1 and TDP-43 being the proteins most closely associated with ALS. We also found a shift toward increased protein partitioning in the insoluble fraction in ALS and this correlated with a worse disease phenotype. In particular, low PPIA soluble levels were associated with six months earlier death. In conclusion, PPIA is a disease modifier with prognostic potential. PBMC proteins indicative of alterations in protein and RNA homeostasis are promising biomarkers of ALS, for diagnosis, prognosis and patient stratification.


: 肌萎缩侧索硬化 (ALS) 是一种致命性的运动神经元疾病,目前尚无有效的生物标志物。以前的探索性研究已经在外周血单核细胞 (pbmc) 中确定了一组候选蛋白生物标志物,包括肽基脯氨酰顺反异构酶 a (PPIA), 热休克同源蛋白 71 kda kda (HSC70),异质核核糖核蛋白 A2/B1 (hnRNPA2B1) 和 TDP-43。还发现 pia 在核糖核蛋白 (RNP) 复合物的组装和动力学中起关键作用,并与 TDP-43 相互作用。它的缺失加速了 ALS SOD1 小鼠模型的疾病进展,PBMCs 中低水平的 pia 与早发性 ALS 相关。然而,PPIA 和其他候选蛋白生物标志物的诊断和预后价值尚未确定。我们分析了 ALS 患者 (n = 93) 、健康个体 (n = 104) 和疾病对照 (n = 111) 的特征良好队列中的 PBMC 蛋白。我们使用了高度控制的样品处理程序,这意味着两步微分洗涤剂分馏。我们发现可溶性和不溶性部分中选定 PBMC 蛋白的水平,结合起来,对区分 ALS 和对照有很高的区分能力,与 PPIA, hnRNPA2B1 和 TDP-43 是与 ALS 关系最密切的蛋白。我们还发现 ALS 中不溶性部分蛋白质分配增加,这与更差的疾病表型相关。特别是,低 pia 可溶性水平与 6 个月前死亡相关。总之,pia 是一种具有预后潜力的疾病修饰因子。指示蛋白质和 RNA 稳态改变的 PBMC 蛋白质是 ALS 的有希望的生物标志物,用于诊断、预后和患者分层。



作者列表:["Aimé P","Karuppagounder SS","Rao A","Chen Y","Burke RE","Ratan RR","Greene LA"]

METHODS::Identifying disease-causing pathways and drugs that target them in Parkinson's disease (PD) has remained challenging. We uncovered a PD-relevant pathway in which the stress-regulated heterodimeric transcription complex CHOP/ATF4 induces the neuron prodeath protein Trib3 that in turn depletes the neuronal survival protein Parkin. Here we sought to determine whether the drug adaptaquin, which inhibits ATF4-dependent transcription, could suppress Trib3 induction and neuronal death in cellular and animal models of PD. Neuronal PC12 cells and ventral midbrain dopaminergic neurons were assessed in vitro for survival, transcription factor levels and Trib3 or Parkin expression after exposure to 6-hydroxydopamine or 1-methyl-4-phenylpyridinium with or without adaptaquin co-treatment. 6-hydroxydopamine injection into the medial forebrain bundle was used to examine the effects of systemic adaptaquin on signaling, substantia nigra dopaminergic neuron survival and striatal projections as well as motor behavior. In both culture and animal models, adaptaquin suppressed elevation of ATF4 and/or CHOP and induction of Trib3 in response to 1-methyl-4-phenylpyridinium and/or 6-hydroxydopamine. In culture, adaptaquin preserved Parkin levels, provided neuroprotection and preserved morphology. In the mouse model, adaptaquin treatment enhanced survival of dopaminergic neurons and substantially protected their striatal projections. It also significantly enhanced retention of nigrostriatal function. These findings define a novel pharmacological approach involving the drug adaptaquin, a selective modulator of hypoxic adaptation, for suppressing Parkin loss and neurodegeneration in toxin models of PD. As adaptaquin possesses an oxyquinoline backbone with known safety in humans, these findings provide a firm rationale for advancing it towards clinical evaluation in PD.

翻译标题与摘要 下载文献
作者列表:["Sebastián-Serrano Á","Simón-García A","Belmonte-Alfaro A","Pose-Utrilla J","Santos-Galindo M","Del Puerto A","García-Guerra L","Hernández IH","Schiavo G","Campanero MR","Lucas JJ","Iglesias T"]

METHODS::Huntington's disease (HD) is an inherited progressive neurodegenerative disease characterized by brain atrophy particularly in the striatum that produces motor impairment, and cognitive and psychiatric disturbances. Multiple pathogenic mechanisms have been proposed including dysfunctions in neurotrophic support and calpain-overactivation, among others. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is an essential mediator of neurotrophin signaling. In adult brain, Kidins220 presents two main isoforms that differ in their carboxy-terminal length and critical protein-protein interaction domains. These variants are generated through alternative terminal exon splicing of the conventional exon 32 (Kidins220-C32) and the recently identified exon 33 (Kidins220-C33). The lack of domains encoded by exon 32 involved in key neuronal functions, including those controlling neurotrophin pathways, pointed to Kidins220-C33 as a form detrimental for neurons. However, the functional role of Kidins220-C33 in neurodegeneration or other pathologies, including HD, has not been explored. In the present work, we discover an unexpected selective downregulation of Kidins220-C33, in the striatum of HD patients, as well as in the R6/1 HD mouse model starting at early symptomatic stages. These changes are C33-specific as Kidins220-C32 variant remains unchanged. We also find the early decrease in Kidins220-C33 levels takes place in neurons, suggesting an unanticipated neuroprotective role for this isoform. Finally, using ex vivo assays and primary neurons, we demonstrate that Kidins220-C33 is downregulated by mechanisms that depend on the activation of the protease calpain. Altogether, these results strongly suggest that calpain-mediated Kidins220-C33 proteolysis modulates onset and/or progression of HD.

翻译标题与摘要 下载文献
作者列表:["Mendes FR","Leclerc JL","Liu L","Kamat PK","Naziripour A","Hernandez D","Li C","Ahmad AS","Doré S"]

METHODS:BACKGROUND:Neuroinflammation has been recognized as an important factor in the pathogenesis of Alzheimer's disease (AD). One of the most recognized pathways in mediating neuroinflammation is the prostaglandin E2-EP1 receptor pathway. OBJECTIVE:Here, we examined the efficacy of the selective EP1 antagonist ONO-8713 in limiting amyloid-β (Aβ), lesion volumes, and behavioral indexes in AD mouse models after ischemic stroke. METHODS:Transgenic APP/PS1, 3xTgAD, and wildtype (WT) mice were subjected to permanent distal middle cerebral artery occlusion (pdMCAO) and sham surgeries. Functional outcomes, memory, anatomical outcomes, and Aβ concentrations were assessed 14 days after surgery. RESULTS:pdMCAO resulted in significant deterioration in functional and anatomical outcomes in the transgenic mice compared with the WT mice. No relevant differences were observed in the behavioral tests when comparing the ONO-8713 and vehicle-treated groups. Significantly lower cavitation (p = 0.0373) and percent tissue loss (p = 0.0247) were observed in APP/PS1 + ONO-8713 mice compared with the WT + ONO-8713 mice. However, the percent tissue injury was significantly higher in APP/PS1 + ONO-8713 mice compared with WT + ONO-8713 group (p = 0.0373). Percent tissue loss was also significantly lower in the 3xTgAD + ONO-8713 mice than in the WT + ONO-8713 mice (p = 0.0185). ONO-8713 treatment also attenuated cortical microgliosis in APP/PS1 mice as compared with the vehicle (p = 0.0079); however, no differences were observed in astrogliosis across the groups. Finally, APP/PS1 mice presented characteristic Aβ load in the cortex while 3xTgAD mice exhibited very low Aβ levels. CONCLUSION:In conclusion, under the experimental conditions, EP1 receptor antagonist ONO-8713 showed modest benefits on anatomical outcomes after stroke, mainly in APP/PS1 mice.