小狗阅读会员会员
医学顶刊SCI精读工具

扫码登录小狗阅读

阅读SCI医学文献
Document
订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}

    按需关注领域/方向,精准获取前沿热点

  • {{item.title}}

    {{item.follow}}人关注

  • {{item.subscribe_count}}人订阅

    IF:{{item.impact_factor}}

    {{item.title}}

Transcriptomics Reveal Altered Metabolic and Signaling Pathways in Podocytes Exposed to C16 Ceramide-Enriched Lipoproteins.

转录组学揭示了暴露于 C16 神经酰胺富集脂蛋白的足细胞中代谢和信号通路的改变。

  • 影响因子:3.45
  • DOI:10.3390/genes11020178
  • 作者列表:"Hammad SM","Twal WO","Arif E","Semler AJ","Klein RL","Nihalani D
  • 发表时间:2020-02-07
Abstract

:Sphingolipids are bioactive lipids associated with cellular membranes and plasma lipoproteins, and their synthesis and degradation are tightly regulated. We have previously determined that low plasma concentrations of certain ceramide species predict the development of nephropathy in diabetes patients with normal albumin excretion rates at baseline. Herein, we tested the hypothesis that altering the sphingolipid content of circulating lipoproteins can alter the metabolic and signaling pathways in podocytes, whose dysfunction leads to an impairment of glomerular filtration. Cultured human podocytes were treated with lipoproteins from healthy subjects enriched in vitro with C16 ceramide, or D-erythro 2-hydroxy C16 ceramide, a ceramide naturally found in skin. The RNA-Seq data demonstrated differential expression of genes regulating sphingolipid metabolism, sphingolipid signaling, and mTOR signaling pathways. A multiplex analysis of mTOR signaling pathway intermediates showed that the majority (eight) of the pathway phosphorylated proteins measured (eleven) were significantly downregulated in response to C16 ceramide-enriched HDL2 compared to HDL2 alone and hydroxy ceramide-enriched HDL2. In contrast, C16 ceramide-enriched HDL3 upregulated the phosphorylation of four intermediates in the mTOR pathway. These findings highlight a possible role for lipoprotein-associated sphingolipids in regulating metabolic and signaling pathways in podocytes and could lead to novel therapeutic targets in glomerular kidney diseases.

摘要

: 鞘脂类是与细胞膜和血浆脂蛋白相关的生物活性脂质,其合成和降解受到严格调控。我们之前已经确定,在基线白蛋白排泄率正常的糖尿病患者中,某些神经酰胺物种的低血浆浓度可预测肾病的发展。在此,我们检验了这样一个假设,即改变循环脂蛋白的鞘脂含量可以改变足细胞的代谢和信号通路,其功能障碍导致肾小球滤过功能受损。用体外富集 C16 神经酰胺或 D-erythro 2-羟基 C16 神经酰胺 (皮肤中天然存在的一种神经酰胺) 的健康受试者的脂蛋白处理培养的人足细胞。RNA-Seq 数据证明了调控鞘脂代谢、鞘脂信号和 mTOR 信号通路的基因的差异表达。MTOR 信号通路中间体的多重分析表明,大多数 (八) 的途径磷酸化蛋白测量 (十一) 与单独的 HDL2 和富含羟基神经酰胺的 HDL2 相比,对富含 C16 神经酰胺的 HDL2 的反应显著下调。相比之下,富含 C16 神经酰胺的 HDL3 上调 mTOR 通路中 4 个中间体的磷酸化。这些发现强调了脂蛋白相关鞘脂类在调节足细胞代谢和信号通路中的可能作用,并可能导致肾小球肾脏疾病的新治疗靶点。

阅读人数:2人
下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:3.17
发表时间:2020-01-30
DOI:10.1111/jhn.12736
作者列表:["Hone M","Nugent AP","Walton J","McNulty BA","Egan B"]

METHODS:BACKGROUND:Given the importance of habitual dietary protein intake, distribution patterns and dietary sources in the aetiology of age-related declines of muscle mass and function, the present study examined these factors as a function of sex and age in Irish adults aged 18-90 years comprising The National Adult Nutrition Survey (NANS). METHODS:In total, 1051 (males, n = 523; females, n = 528) undertook a 4-day semi-weighed food diary. Total, body mass relative intake and percentage contribution to total energy intake of dietary protein were determined in addition to protein distribution scores (PDS), as well as the contribution of food groups, animal- and plant-based foods to total protein intake. RESULTS:Total and relative protein intake [mean (SD)] were highest in those aged 18-35 years [96 (3) g day , 1.32 (0.40) g kg day ], with lower protein intakes with increasing age (i.e. in adults aged ≥65 years [82 (22) g, 1.15 (0.34) g kg day , P < 0.001 for both]. Differences in protein intake between age groups were more pronounced in males compared to females. Protein distribution followed a skewed pattern for all age groups [breakfast, 15 (10) g; lunch, 30 (15) g; dinner, 44 (17) g]. Animal-based foods were the dominant protein source within the diet [63% (11%) versus 37% (11%) plant protein, P < 0.001]. CONCLUSIONS:Protein intake and the number of meals reaching the purported threshold for maximising post-prandial anabolism were highest in young adults, and lower with increasing age. For main meals, breakfast provided the lowest quantity of protein across all age categories and may represent an opportunity for improving protein distribution, whereas, in older adults, increasing the number of meals reaching the anabolic threshold regardless of distribution pattern may be more appropriate.

翻译标题与摘要 下载文献
影响因子:2.76
发表时间:2020-01-30
DOI:10.1152/japplphysiol.00631.2019
作者列表:["Bonomi AG","Ten Hoor GA","De Morree HM","Plasqui G","Sartor F"]

METHODS:BACKGROUND:Low cardiorespiratory fitness (CRF) increases risk of all-cause mortality and cardiovascular events. Periodic CRF assessment can have an important preventive function. OBJECTIVE:To develop a protocol-free method to estimate CRF in daily life based on heart rate (HR) and body acceleration measurements. METHODS:Acceleration and HR data were collected from 37 subjects (M=49%) while performing a standardized laboratory activity protocol (sitting, walking, running, cycling) and during a 5-days free-living monitoring period. CRF was determined by oxygen uptake (VO2max) during maximal exercise testing. A doubly-labeled water validated equation was used to predict total energy expenditure (TEE) from acceleration data. A fitness index was defined as the ratio between TEE and HR (TEE-pulse). Activity recognition techniques were used to process acceleration features and classify sedentary, ambulatory and other activity types. Regression equations based on TEE-pulse data from each activity type were developed to predict VO2max. RESULTS:TEE-pulse measured within each activity type of the laboratory protocol was highly correlated to VO2max (r from 0.74 to 0.91). Averaging the outcome of each activity-type specific equation based on TEE-pulse from the laboratory data led to accurate estimates of VO2max (RMSE: 300.0 mlO2/min or 10%). The difference between laboratory and free-living determined TEE-pulse was 3.7 ± 11% (r =0.85). The prediction method preserved the prediction accuracy when applied to free-living data (RMSE: 367 mlO2/min or 12%). CONCLUSIONS:Measurements of body acceleration and HR can be used to predict VO2max in daily life. Activity-specific prediction equations are needed to achieve highly accurate estimates of CRF.

翻译标题与摘要 下载文献
影响因子:3.76
发表时间:2020-01-31
DOI:10.1152/ajpgi.00386.2018
作者列表:["Farr S","Stankovic B","Hoffman S","Masoudpoor H","Baker C","Taher J","Dean A","Anakk S","Adeli K"]

METHODS:OBJECTIVE:Postprandial dyslipidemia is a common feature of insulin resistant states and contributes to increased cardiovascular disease risk. Recently, bile acids have been recognized beyond their emulsification properties as important signaling molecules that promote energy expenditure, improve insulin sensitivity, and lower fasting lipemia. While bile acid receptors have become novel pharmaceutical targets, their effects on postprandial lipid metabolism remain unclear. Here we investigated the potential role of bile acids in regulation of postprandial chylomicron production and triglyceride excursion. Approach and Results: Healthy C57BL/6 mice were given an intraduodenal infusion of taurocholic acid (TA) under fat-loaded conditions and circulating lipids were measured. Targeting of bile acid receptors was achieved with GW4064, a synthetic agonist to the farnesoid X receptor (FXR), and with deoxycholic acid (DCA), an activator of the Takeda G-protein-coupled receptor 5. TA, GW4064, and DCA treatments all lowered postprandial lipemia. FXR agonism also reduced intestinal triglyceride content and activity of microsomal triglyceride transfer protein, involved in chylomicron assembly. Importantly, TA effects (but not DCA) were largely lost in FXR knockout mice. These bile acid effects are reminiscent of the anti-diabetic hormone glucagon-like peptide-1 (GLP-1). While the GLP-1 receptor agonist exendin-4 retained its ability to acutely lower postprandial lipemia during bile acid sequestration and FXR deficiency, it did raise hepatic expression of the rate limiting enzyme for bile acid synthesis. CONCLUSIONS:Bile acid signaling may be an important mechanism of controlling dietary lipid absorption and bile acid receptors may constitute novel targets for the treatment of postprandial dyslipidemia.

关键词: 暂无
翻译标题与摘要 下载文献
方向

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

科研福利

临床科研之家订阅号

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: