扫码登录小狗阅读
Gray matter volume and estimated brain age gap are not linked with sleep-disordered breathing.
灰质体积和估计的大脑年龄差距与睡眠呼吸障碍无关。
- 影响因子:5.11
- DOI:10.1002/hbm.24995
- 作者列表:"Mohajer B","Abbasi N","Mohammadi E","Khazaie H","Osorio RS","Rosenzweig I","Eickhoff CR","Zarei M","Tahmasian M","Eickhoff SB","Alzheimer's Disease Neuroimaging Initiative.
- 发表时间:2020-04-02
Abstract
:Alzheimer's disease (AD) and sleep-disordered breathing (SDB) are prevalent conditions with a rising burden. It is suggested that SDB may contribute to cognitive decline and advanced aging. Here, we assessed the link between self-reported SDB and gray matter volume in patients with AD, mild cognitive impairment (MCI) and healthy controls (HCs). We further investigated whether SDB was associated with advanced brain aging. We included a total of 330 participants, divided based on self-reported history of SDB, and matched across diagnoses for age, sex and presence of the Apolipoprotein E4 allele, from the Alzheimer's Disease Neuroimaging Initiative (ADNI). Gray-matter volume was measured using voxel-wise morphometry and group differences in terms of SDB, cognitive status, and their interaction were assessed. Further, using an age-prediction model fitted on gray-matter data of external datasets, we predicted study participants' age from their structural images. Cognitive decline and advanced age were associated with lower gray matter volume in various regions, particularly in the bilateral temporal lobes. Brains age was well predicted from the morphological data in HCs and, as expected, elevated in MCI and particularly in AD subjects. However, there was neither a significant difference between regional gray matter volume in any diagnostic group related to the SDB status, nor in SDB-by-cognitive status interaction. Moreover, we found no difference in estimated chronological age gap related to SDB, or by-cognitive status interaction. Contrary to our hypothesis, we were not able to find a general or a diagnostic-dependent association of SDB with either gray-matter volumetric or brain aging.
摘要
: 阿尔茨海默病 (AD) 和睡眠呼吸障碍 (SDB) 是负担增加的常见疾病。提示 SDB 可能有助于认知功能下降和晚期衰老。在此,我们评估了 AD 、轻度认知障碍 (MCI) 和健康对照 (HCs) 患者自我报告 SDB 和灰质体积之间的联系。我们进一步研究 SDB 是否与晚期脑老化相关。我们共纳入了 330 名参与者,根据自我报告的 SDB 病史进行分组,并在年龄、性别和载脂蛋白 E4 等位基因存在的诊断中进行匹配,来自阿尔茨海默病神经影像学倡议 (ADNI)。使用体素形态测量法测量灰质体积,并根据 SDB 、认知状态进行组间差异,并评估其相互作用。此外,使用拟合外部数据集灰质数据的年龄预测模型,我们从研究参与者的结构图像中预测了他们的年龄。认知功能下降和高龄与各区域灰质体积较低有关,特别是在双侧颞叶。从 HCs 的形态学数据可以很好地预测大脑年龄,正如预期的那样,MCI 尤其是 AD 受试者的大脑年龄升高。然而,在任何与 SDB 状态相关的诊断组中,区域灰质体积之间都没有显著差异,在 SDB-by-认知状态交互作用中也没有显著差异。此外,我们发现与 SDB 或认知状态交互作用相关的估计实足年龄差距没有差异。与我们的假设相反,我们无法找到 SDB 与灰质体积或脑老化的一般或诊断依赖性关联。
小狗阅读
帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。
METHODS::Identifying disease-causing pathways and drugs that target them in Parkinson's disease (PD) has remained challenging. We uncovered a PD-relevant pathway in which the stress-regulated heterodimeric transcription complex CHOP/ATF4 induces the neuron prodeath protein Trib3 that in turn depletes the neuronal survival protein Parkin. Here we sought to determine whether the drug adaptaquin, which inhibits ATF4-dependent transcription, could suppress Trib3 induction and neuronal death in cellular and animal models of PD. Neuronal PC12 cells and ventral midbrain dopaminergic neurons were assessed in vitro for survival, transcription factor levels and Trib3 or Parkin expression after exposure to 6-hydroxydopamine or 1-methyl-4-phenylpyridinium with or without adaptaquin co-treatment. 6-hydroxydopamine injection into the medial forebrain bundle was used to examine the effects of systemic adaptaquin on signaling, substantia nigra dopaminergic neuron survival and striatal projections as well as motor behavior. In both culture and animal models, adaptaquin suppressed elevation of ATF4 and/or CHOP and induction of Trib3 in response to 1-methyl-4-phenylpyridinium and/or 6-hydroxydopamine. In culture, adaptaquin preserved Parkin levels, provided neuroprotection and preserved morphology. In the mouse model, adaptaquin treatment enhanced survival of dopaminergic neurons and substantially protected their striatal projections. It also significantly enhanced retention of nigrostriatal function. These findings define a novel pharmacological approach involving the drug adaptaquin, a selective modulator of hypoxic adaptation, for suppressing Parkin loss and neurodegeneration in toxin models of PD. As adaptaquin possesses an oxyquinoline backbone with known safety in humans, these findings provide a firm rationale for advancing it towards clinical evaluation in PD.
METHODS::Huntington's disease (HD) is an inherited progressive neurodegenerative disease characterized by brain atrophy particularly in the striatum that produces motor impairment, and cognitive and psychiatric disturbances. Multiple pathogenic mechanisms have been proposed including dysfunctions in neurotrophic support and calpain-overactivation, among others. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is an essential mediator of neurotrophin signaling. In adult brain, Kidins220 presents two main isoforms that differ in their carboxy-terminal length and critical protein-protein interaction domains. These variants are generated through alternative terminal exon splicing of the conventional exon 32 (Kidins220-C32) and the recently identified exon 33 (Kidins220-C33). The lack of domains encoded by exon 32 involved in key neuronal functions, including those controlling neurotrophin pathways, pointed to Kidins220-C33 as a form detrimental for neurons. However, the functional role of Kidins220-C33 in neurodegeneration or other pathologies, including HD, has not been explored. In the present work, we discover an unexpected selective downregulation of Kidins220-C33, in the striatum of HD patients, as well as in the R6/1 HD mouse model starting at early symptomatic stages. These changes are C33-specific as Kidins220-C32 variant remains unchanged. We also find the early decrease in Kidins220-C33 levels takes place in neurons, suggesting an unanticipated neuroprotective role for this isoform. Finally, using ex vivo assays and primary neurons, we demonstrate that Kidins220-C33 is downregulated by mechanisms that depend on the activation of the protease calpain. Altogether, these results strongly suggest that calpain-mediated Kidins220-C33 proteolysis modulates onset and/or progression of HD.
METHODS:BACKGROUND:Neuroinflammation has been recognized as an important factor in the pathogenesis of Alzheimer's disease (AD). One of the most recognized pathways in mediating neuroinflammation is the prostaglandin E2-EP1 receptor pathway. OBJECTIVE:Here, we examined the efficacy of the selective EP1 antagonist ONO-8713 in limiting amyloid-β (Aβ), lesion volumes, and behavioral indexes in AD mouse models after ischemic stroke. METHODS:Transgenic APP/PS1, 3xTgAD, and wildtype (WT) mice were subjected to permanent distal middle cerebral artery occlusion (pdMCAO) and sham surgeries. Functional outcomes, memory, anatomical outcomes, and Aβ concentrations were assessed 14 days after surgery. RESULTS:pdMCAO resulted in significant deterioration in functional and anatomical outcomes in the transgenic mice compared with the WT mice. No relevant differences were observed in the behavioral tests when comparing the ONO-8713 and vehicle-treated groups. Significantly lower cavitation (p = 0.0373) and percent tissue loss (p = 0.0247) were observed in APP/PS1 + ONO-8713 mice compared with the WT + ONO-8713 mice. However, the percent tissue injury was significantly higher in APP/PS1 + ONO-8713 mice compared with WT + ONO-8713 group (p = 0.0373). Percent tissue loss was also significantly lower in the 3xTgAD + ONO-8713 mice than in the WT + ONO-8713 mice (p = 0.0185). ONO-8713 treatment also attenuated cortical microgliosis in APP/PS1 mice as compared with the vehicle (p = 0.0079); however, no differences were observed in astrogliosis across the groups. Finally, APP/PS1 mice presented characteristic Aβ load in the cortex while 3xTgAD mice exhibited very low Aβ levels. CONCLUSION:In conclusion, under the experimental conditions, EP1 receptor antagonist ONO-8713 showed modest benefits on anatomical outcomes after stroke, mainly in APP/PS1 mice.