订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}


  • {{item.title}}


  • {{item.subscribe_count}}人订阅



Transcriptomic profiling of microglia and astrocytes throughout aging.


  • 影响因子:5.75
  • DOI:10.1186/s12974-020-01774-9
  • 作者列表:"Pan J","Ma N","Yu B","Zhang W","Wan J
  • 发表时间:2020-04-01

BACKGROUND:Activation of microglia and astrocytes, a prominent hallmark of both aging and Alzheimer's disease (AD), has been suggested to contribute to aging and AD progression, but the underlying cellular and molecular mechanisms are largely unknown. METHODS:We performed RNA-seq analyses on microglia and astrocytes freshly isolated from wild-type and APP-PS1 (AD) mouse brains at five time points to elucidate their age-related gene-expression profiles. RESULTS:Our results showed that from 4 months onward, a set of age-related genes in microglia and astrocytes exhibited consistent upregulation or downregulation (termed "age-up"/"age-down" genes) relative to their expression at the young-adult stage (2 months). And most age-up genes were more highly expressed in AD mice at the same time points. Bioinformatic analyses revealed that the age-up genes in microglia were associated with the inflammatory response, whereas these genes in astrocytes included widely recognized AD risk genes, genes associated with synaptic transmission or elimination, and peptidase-inhibitor genes. CONCLUSIONS:Overall, our RNA-seq data provide a valuable resource for future investigations into the roles of microglia and astrocytes in aging- and amyloid-β-induced AD pathologies.


背景: 小胶质细胞和星形胶质细胞的激活是衰老和阿尔茨海默病 (Alzheimer's disease,AD) 的显著标志,已被认为有助于衰老和 AD 进展,但是潜在的细胞和分子机制在很大程度上是未知的。 方法: 我们对从野生型和 APP-PS1 (AD) 小鼠大脑中新鲜分离的小胶质细胞和星形胶质细胞进行了 5 个时间点的 RNA-seq 分析,以阐明其与年龄相关的基因表达谱。 结果: 我们的结果显示,从 4 个月开始,小胶质细胞和星形胶质细胞中的一组年龄相关基因表现出一致的上调或下调 (称为 “衰老”/“衰老” 基因) 相对于它们在年轻成人阶段 (2 个月) 的表达。在同一时间点,大多数衰老基因在 AD 小鼠中表达更高。生物信息学分析发现,小胶质细胞中的老化基因与炎症反应相关,而星形胶质细胞中的这些基因包括广泛认可的 AD 风险基因,与突触传递或消除相关的基因,和肽酶抑制剂基因。 结论: 总体而言,我们的 RNA-seq 数据为未来研究小胶质细胞和星形胶质细胞在衰老和淀粉样蛋白-β 诱导的 AD 病理中的作用提供了宝贵的资源。



作者列表:["Aimé P","Karuppagounder SS","Rao A","Chen Y","Burke RE","Ratan RR","Greene LA"]

METHODS::Identifying disease-causing pathways and drugs that target them in Parkinson's disease (PD) has remained challenging. We uncovered a PD-relevant pathway in which the stress-regulated heterodimeric transcription complex CHOP/ATF4 induces the neuron prodeath protein Trib3 that in turn depletes the neuronal survival protein Parkin. Here we sought to determine whether the drug adaptaquin, which inhibits ATF4-dependent transcription, could suppress Trib3 induction and neuronal death in cellular and animal models of PD. Neuronal PC12 cells and ventral midbrain dopaminergic neurons were assessed in vitro for survival, transcription factor levels and Trib3 or Parkin expression after exposure to 6-hydroxydopamine or 1-methyl-4-phenylpyridinium with or without adaptaquin co-treatment. 6-hydroxydopamine injection into the medial forebrain bundle was used to examine the effects of systemic adaptaquin on signaling, substantia nigra dopaminergic neuron survival and striatal projections as well as motor behavior. In both culture and animal models, adaptaquin suppressed elevation of ATF4 and/or CHOP and induction of Trib3 in response to 1-methyl-4-phenylpyridinium and/or 6-hydroxydopamine. In culture, adaptaquin preserved Parkin levels, provided neuroprotection and preserved morphology. In the mouse model, adaptaquin treatment enhanced survival of dopaminergic neurons and substantially protected their striatal projections. It also significantly enhanced retention of nigrostriatal function. These findings define a novel pharmacological approach involving the drug adaptaquin, a selective modulator of hypoxic adaptation, for suppressing Parkin loss and neurodegeneration in toxin models of PD. As adaptaquin possesses an oxyquinoline backbone with known safety in humans, these findings provide a firm rationale for advancing it towards clinical evaluation in PD.

翻译标题与摘要 下载文献
作者列表:["Sebastián-Serrano Á","Simón-García A","Belmonte-Alfaro A","Pose-Utrilla J","Santos-Galindo M","Del Puerto A","García-Guerra L","Hernández IH","Schiavo G","Campanero MR","Lucas JJ","Iglesias T"]

METHODS::Huntington's disease (HD) is an inherited progressive neurodegenerative disease characterized by brain atrophy particularly in the striatum that produces motor impairment, and cognitive and psychiatric disturbances. Multiple pathogenic mechanisms have been proposed including dysfunctions in neurotrophic support and calpain-overactivation, among others. Kinase D-interacting substrate of 220 kDa (Kidins220), also known as ankyrin repeat-rich membrane spanning (ARMS), is an essential mediator of neurotrophin signaling. In adult brain, Kidins220 presents two main isoforms that differ in their carboxy-terminal length and critical protein-protein interaction domains. These variants are generated through alternative terminal exon splicing of the conventional exon 32 (Kidins220-C32) and the recently identified exon 33 (Kidins220-C33). The lack of domains encoded by exon 32 involved in key neuronal functions, including those controlling neurotrophin pathways, pointed to Kidins220-C33 as a form detrimental for neurons. However, the functional role of Kidins220-C33 in neurodegeneration or other pathologies, including HD, has not been explored. In the present work, we discover an unexpected selective downregulation of Kidins220-C33, in the striatum of HD patients, as well as in the R6/1 HD mouse model starting at early symptomatic stages. These changes are C33-specific as Kidins220-C32 variant remains unchanged. We also find the early decrease in Kidins220-C33 levels takes place in neurons, suggesting an unanticipated neuroprotective role for this isoform. Finally, using ex vivo assays and primary neurons, we demonstrate that Kidins220-C33 is downregulated by mechanisms that depend on the activation of the protease calpain. Altogether, these results strongly suggest that calpain-mediated Kidins220-C33 proteolysis modulates onset and/or progression of HD.

翻译标题与摘要 下载文献
作者列表:["Mendes FR","Leclerc JL","Liu L","Kamat PK","Naziripour A","Hernandez D","Li C","Ahmad AS","Doré S"]

METHODS:BACKGROUND:Neuroinflammation has been recognized as an important factor in the pathogenesis of Alzheimer's disease (AD). One of the most recognized pathways in mediating neuroinflammation is the prostaglandin E2-EP1 receptor pathway. OBJECTIVE:Here, we examined the efficacy of the selective EP1 antagonist ONO-8713 in limiting amyloid-β (Aβ), lesion volumes, and behavioral indexes in AD mouse models after ischemic stroke. METHODS:Transgenic APP/PS1, 3xTgAD, and wildtype (WT) mice were subjected to permanent distal middle cerebral artery occlusion (pdMCAO) and sham surgeries. Functional outcomes, memory, anatomical outcomes, and Aβ concentrations were assessed 14 days after surgery. RESULTS:pdMCAO resulted in significant deterioration in functional and anatomical outcomes in the transgenic mice compared with the WT mice. No relevant differences were observed in the behavioral tests when comparing the ONO-8713 and vehicle-treated groups. Significantly lower cavitation (p = 0.0373) and percent tissue loss (p = 0.0247) were observed in APP/PS1 + ONO-8713 mice compared with the WT + ONO-8713 mice. However, the percent tissue injury was significantly higher in APP/PS1 + ONO-8713 mice compared with WT + ONO-8713 group (p = 0.0373). Percent tissue loss was also significantly lower in the 3xTgAD + ONO-8713 mice than in the WT + ONO-8713 mice (p = 0.0185). ONO-8713 treatment also attenuated cortical microgliosis in APP/PS1 mice as compared with the vehicle (p = 0.0079); however, no differences were observed in astrogliosis across the groups. Finally, APP/PS1 mice presented characteristic Aβ load in the cortex while 3xTgAD mice exhibited very low Aβ levels. CONCLUSION:In conclusion, under the experimental conditions, EP1 receptor antagonist ONO-8713 showed modest benefits on anatomical outcomes after stroke, mainly in APP/PS1 mice.