订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}


  • {{item.title}}


  • {{item.subscribe_count}}人订阅



Brain iron deposition is linked with cognitive severity in Parkinson's disease.


  • 影响因子:5.44
  • DOI:10.1136/jnnp-2019-322042
  • 作者列表:"Thomas GEC","Leyland LA","Schrag AE","Lees AJ","Acosta-Cabronero J","Weil RS
  • 发表时间:2020-02-20

BACKGROUND:Dementia is common in Parkinson's disease (PD) but measures that track cognitive change in PD are lacking. Brain tissue iron accumulates with age and co-localises with pathological proteins linked to PD dementia such as amyloid. We used quantitative susceptibility mapping (QSM) to detect changes related to cognitive change in PD. METHODS:We assessed 100 patients with early-stage to mid-stage PD, and 37 age-matched controls using the Montreal Cognitive Assessment (MoCA), a validated clinical algorithm for risk of cognitive decline in PD, measures of visuoperceptual function and the Movement Disorders Society Unified Parkinson's Disease Rating Scale part 3 (UPDRS-III). We investigated the association between these measures and QSM, an MRI technique sensitive to brain tissue iron content. RESULTS:We found QSM increases (consistent with higher brain tissue iron content) in PD compared with controls in prefrontal cortex and putamen (p<0.05 corrected for multiple comparisons). Whole brain regression analyses within the PD group identified QSM increases covarying: (1) with lower MoCA scores in the hippocampus and thalamus, (2) with poorer visual function and with higher dementia risk scores in parietal, frontal and medial occipital cortices, (3) with higher UPDRS-III scores in the putamen (all p<0.05 corrected for multiple comparisons). In contrast, atrophy, measured using voxel-based morphometry, showed no differences between groups, or in association with clinical measures. CONCLUSIONS:Brain tissue iron, measured using QSM, can track cognitive involvement in PD. This may be useful to detect signs of early cognitive change to stratify groups for clinical trials and monitor disease progression.


背景: 痴呆在帕金森病 (PD) 中很常见,但缺乏追踪 PD 认知变化的指标。脑组织铁随着年龄的增长而积累,并与与 PD 痴呆相关的病理蛋白如淀粉样蛋白共定位。我们使用定量易感性图谱 (QSM) 检测与 PD 认知改变相关的变化。 方法: 我们使用蒙特利尔认知评估量表 (MoCA) 对 100 例早期至中期 PD 患者和 37 例年龄匹配的对照者进行了评估。 PD 认知下降风险的经验证的临床算法、视觉操作功能测量和运动障碍协会统一帕金森病评定量表第 3 部分 (UPDRS-III)。我们研究了这些指标与 QSM (一种对脑组织铁含量敏感的 MRI 技术) 之间的相关性。 结果: 我们发现与前额叶皮层和壳核的对照组相比,PD 中的 QSM 增加 (与较高的脑组织铁含量一致) (p



来源期刊:Neuroscience letters
作者列表:["Battaglini L","Contemori G","Penzo S","Maniglia M"]

METHODS::In recent years, transcranial electrical stimulation (tES) has been used to improve cognitive and perceptual abilities and to boost learning. In the visual domain, transcranial random noise stimulation (tRNS), a type of tES in which electric current is randomly alternating in between two electrodes at high frequency, has shown potential in inducing long lasting perceptual improvements when coupled with tasks such as contrast detection. However, its cortical mechanisms and online effects have not been fully understood yet, and it is still unclear whether these long-term improvements are due to early-stage perceptual enhancements of contrast sensitivity or later stage mechanisms such as learning consolidation. Here we tested tRNS effects on multiple spatial frequencies and orientation, showing that tRNS enhances detection of a low contrast Gabor, but only for oblique orientation and high spatial frequency (12 cycles per degree of visual angle). No improvement was observed for low contrast and vertical stimuli. These results indicate that tRNS can enhance contrast sensitivity already after one training session, however this early onset is dependent on characteristics of the stimulus such as spatial frequency and orientation. In particular, the shallow depth of tRNS is likely to affect superficial layers of the visual cortex where neurons have higher preferred spatial frequencies than cells in further layers, while the lack of effect on vertical stimuli might reflect the optimization of the visual system to see cardinally oriented low contrast stimuli, leaving little room for short-term improvement. Taken together, these results suggest that online tRNS effects on visual perception are the result of a complex interaction between stimulus intensity and cortical anatomy, consistent with previous literature on brain stimulation.

翻译标题与摘要 下载文献
作者列表:["Pelot NA","Grill WM"]

METHODS:OBJECTIVE:There is growing interest in treating diseases by electrical stimulation and block of peripheral autonomic nerves, but a paucity of studies on excitation and block of small diameter autonomic axons. We conducted in vivo quantification of the strength-duration properties, activity-dependent slowing (ADS), and responses to kilohertz frequency (KHF) signals for the rat vagus nerve (VN). APPROACH:We conducted acute in vivo experiments in urethane-anesthetised rats. We placed two cuff electrodes on the left cervical VN and one cuff electrode on the anterior subdiaphragmatic VN. The rostral cervical cuff was used to deliver pulses to quantify recruitment and ADS. The caudal cervical cuff was used to deliver KHF signals. The subdiaphragmatic cuff was used to record compound action potentials (CAPs). MAIN RESULTS:We quantified the input-output recruitment and strength-duration curves. Fits to the data using standard strength-duration equations were qualitatively similar, but the resulting chronaxie and rheobase estimates varied substantially. We measured larger thresholds for the slowest fibres (0.5 to 1 m/s), especially at shorter pulse widths. Using a novel cross-correlation CAP-based analysis, we measured ADS of ~2.3% after 3 min of 2 Hz stimulation, which is comparable to ADS reported for sympathetic efferents in somatic nerves, but much smaller than ADS in cutaneous nociceptors. We found greater ADS with higher stimulation frequency and non-monotonic changes in CV in select cases. We found monotonically increasing block thresholds across frequencies from 10 to 80 kHz for both fast and slow fibres. Further, following 25 s of KHF signal, neural conduction could require tens of seconds to recover. SIGNIFICANCE:The quantification of mammalian autonomic nerve responses to conventional and KHF signals provides essential information for development of peripheral nerve stimulation therapies and for understanding their mechanisms of action.

作者列表:["Liu A","Friedman D","Barron DS","Wang X","Thesen T","Dugan P"]

METHODS:BACKGROUND:Early accounts of forced thought were reported at the onset of a focal seizure, and characterized as vague, repetitive, and involuntary intellectual auras distinct from perceptual or psychic hallucinations or illusions. Here, we examine the neural underpinnings involved in conceptual thought by presenting a series of 3 patients with epilepsy reporting intrusive thoughts during electrical stimulation of the left lateral prefrontal cortex (PFC) during invasive surgical evaluation. We illustrate the widespread networks involved through two independent brain imaging modalities: resting state functional magnetic resonance imaging (fMRI) (rs-fMRI) and task-based meta-analytic connectivity modeling (MACM). METHODS:We report the clinical and stimulation characteristics of three patients with left hemispheric language dominance who demonstrate forced thought with functional mapping. To examine the brain networks underlying this phenomenon, we used the regions of interest (ROI) centered at the active electrode pairs. We modeled functional networks using two approaches: (1) rs-fMRI functional connectivity analysis, representing 81 healthy controls and (2) meta-analytic connectivity modeling (MACM), representing 8260 healthy subjects. We also determined the overlapping regions between these three subjects' rs-fMRI and MACM networks through a conjunction analysis. RESULTS:We identified that left PFC was associated with a large-scale functional network including frontal, temporal, and parietal regions, a network that has been associated with multiple cognitive functions including semantics, speech, attention, working memory, and explicit memory. CONCLUSIONS:We illustrate the neural networks involved in conceptual thought through a unique patient population and argue that PFC supports this function through activation of a widespread network.

翻译标题与摘要 下载文献