小狗阅读会员会员
医学顶刊SCI精读工具

扫码登录小狗阅读

阅读SCI医学文献
Document
订阅泛读方向 订阅泛读期刊
  • 我的关注
  • 我的关注
  • {{item.title}}

    按需关注领域/方向,精准获取前沿热点

  • {{item.title}}

    {{item.follow}}人关注

  • {{item.subscribe_count}}人订阅

    IF:{{item.impact_factor}}

    {{item.title}}

Reading music and words: The anatomical connectivity of musicians' visual cortex.

阅读音乐和单词: 音乐家视觉皮层的解剖连接。

  • 影响因子:6.13
  • DOI:10.1016/j.neuroimage.2020.116666
  • 作者列表:"Bouhali F","Mongelli V","Thiebaut de Schotten M","Cohen L
  • 发表时间:2020-02-19
Abstract

:Musical score reading and word reading have much in common, from their historical origins to their cognitive foundations and neural correlates. In the ventral occipitotemporal cortex (VOT), the specialization of the so-called Visual Word Form Area for word reading has been linked to its privileged structural connectivity to distant language regions. Here we investigated how anatomical connectivity relates to the segregation of regions specialized for musical notation or words in the VOT. In a cohort of professional musicians and non-musicians, we used probabilistic tractography combined with task-related functional MRI to identify the connections of individually defined word- and music-selective left VOT regions. Despite their close proximity, these regions differed significantly in their structural connectivity, irrespective of musical expertise. The music-selective region was significantly more connected to posterior lateral temporal regions than the word-selective region, which, conversely, was significantly more connected to anterior ventral temporal cortex. Furthermore, musical expertise had a double impact on the connectivity of the music region. First, music tracts were significantly larger in musicians than in non-musicians, associated with marginally higher connectivity to perisylvian music-related areas. Second, the spatial similarity between music and word tracts was significantly increased in musicians, consistently with the increased overlap of language and music functional activations in musicians, as compared to non-musicians. These results support the view that, for music as for words, very specific anatomical connections influence the specialization of distinct VOT areas, and that reciprocally those connections are selectively enhanced by the expertise for word or music reading.

摘要

: 乐谱阅读和单词阅读有很多共同点,从它们的历史起源到它们的认知基础和神经相关性。在腹侧枕颞皮层 (VOT),所谓的单词阅读视觉词形区的特化与其与遥远语言区域的特权结构连接有关。在这里,我们研究了解剖连接如何与专门用于乐谱的区域或 VOT 中的单词的分离相关。在专业音乐家和非音乐家的队列中,我们使用概率纤维束成像结合任务相关功能 MRI 来识别单独定义的单词和音乐选择性左 VOT 区域的连接。尽管这些区域非常接近,但无论音乐专业知识如何,它们的结构连通性都有很大差异。音乐选择性区域与后外侧颞区的连接明显多于词选择性区域,反之,与前腹侧颞皮层的连接明显更多。此外,音乐专业知识对音乐区域的连通性有双重影响。首先,音乐家的音乐束明显大于非音乐家,与 perisylyvian 音乐相关区域的连通性稍高相关。第二,与非音乐家相比,音乐家的音乐和词域之间的空间相似性显著增加,音乐家的语言和音乐功能激活的重叠增加。这些结果支持这样的观点,即对于音乐和单词,非常具体的解剖连接影响不同 VOT 区域的专业化, 相互作用的是,这些联系有选择地通过单词或音乐阅读的专业知识得到加强。

下载该文献
小狗阅读

帮助医生、学生、科研工作者解决SCI文献找不到、看不懂、阅读效率低的问题。提供领域精准的SCI文献,通过多角度解析提高文献阅读效率,从而使用户获得有价值研究思路。

相关文献
影响因子:2.21
发表时间:2020-01-19
来源期刊:Neuroscience letters
DOI:10.1016/j.neulet.2019.134696
作者列表:["Battaglini L","Contemori G","Penzo S","Maniglia M"]

METHODS::In recent years, transcranial electrical stimulation (tES) has been used to improve cognitive and perceptual abilities and to boost learning. In the visual domain, transcranial random noise stimulation (tRNS), a type of tES in which electric current is randomly alternating in between two electrodes at high frequency, has shown potential in inducing long lasting perceptual improvements when coupled with tasks such as contrast detection. However, its cortical mechanisms and online effects have not been fully understood yet, and it is still unclear whether these long-term improvements are due to early-stage perceptual enhancements of contrast sensitivity or later stage mechanisms such as learning consolidation. Here we tested tRNS effects on multiple spatial frequencies and orientation, showing that tRNS enhances detection of a low contrast Gabor, but only for oblique orientation and high spatial frequency (12 cycles per degree of visual angle). No improvement was observed for low contrast and vertical stimuli. These results indicate that tRNS can enhance contrast sensitivity already after one training session, however this early onset is dependent on characteristics of the stimulus such as spatial frequency and orientation. In particular, the shallow depth of tRNS is likely to affect superficial layers of the visual cortex where neurons have higher preferred spatial frequencies than cells in further layers, while the lack of effect on vertical stimuli might reflect the optimization of the visual system to see cardinally oriented low contrast stimuli, leaving little room for short-term improvement. Taken together, these results suggest that online tRNS effects on visual perception are the result of a complex interaction between stimulus intensity and cortical anatomy, consistent with previous literature on brain stimulation.

翻译标题与摘要 下载文献
影响因子:5.13
发表时间:2020-01-16
DOI:10.1088/1741-2552/ab6cb6
作者列表:["Pelot NA","Grill WM"]

METHODS:OBJECTIVE:There is growing interest in treating diseases by electrical stimulation and block of peripheral autonomic nerves, but a paucity of studies on excitation and block of small diameter autonomic axons. We conducted in vivo quantification of the strength-duration properties, activity-dependent slowing (ADS), and responses to kilohertz frequency (KHF) signals for the rat vagus nerve (VN). APPROACH:We conducted acute in vivo experiments in urethane-anesthetised rats. We placed two cuff electrodes on the left cervical VN and one cuff electrode on the anterior subdiaphragmatic VN. The rostral cervical cuff was used to deliver pulses to quantify recruitment and ADS. The caudal cervical cuff was used to deliver KHF signals. The subdiaphragmatic cuff was used to record compound action potentials (CAPs). MAIN RESULTS:We quantified the input-output recruitment and strength-duration curves. Fits to the data using standard strength-duration equations were qualitatively similar, but the resulting chronaxie and rheobase estimates varied substantially. We measured larger thresholds for the slowest fibres (0.5 to 1 m/s), especially at shorter pulse widths. Using a novel cross-correlation CAP-based analysis, we measured ADS of ~2.3% after 3 min of 2 Hz stimulation, which is comparable to ADS reported for sympathetic efferents in somatic nerves, but much smaller than ADS in cutaneous nociceptors. We found greater ADS with higher stimulation frequency and non-monotonic changes in CV in select cases. We found monotonically increasing block thresholds across frequencies from 10 to 80 kHz for both fast and slow fibres. Further, following 25 s of KHF signal, neural conduction could require tens of seconds to recover. SIGNIFICANCE:The quantification of mammalian autonomic nerve responses to conventional and KHF signals provides essential information for development of peripheral nerve stimulation therapies and for understanding their mechanisms of action.

影响因子:2.48
发表时间:2020-01-14
DOI:10.1016/j.yebeh.2019.106644
作者列表:["Liu A","Friedman D","Barron DS","Wang X","Thesen T","Dugan P"]

METHODS:BACKGROUND:Early accounts of forced thought were reported at the onset of a focal seizure, and characterized as vague, repetitive, and involuntary intellectual auras distinct from perceptual or psychic hallucinations or illusions. Here, we examine the neural underpinnings involved in conceptual thought by presenting a series of 3 patients with epilepsy reporting intrusive thoughts during electrical stimulation of the left lateral prefrontal cortex (PFC) during invasive surgical evaluation. We illustrate the widespread networks involved through two independent brain imaging modalities: resting state functional magnetic resonance imaging (fMRI) (rs-fMRI) and task-based meta-analytic connectivity modeling (MACM). METHODS:We report the clinical and stimulation characteristics of three patients with left hemispheric language dominance who demonstrate forced thought with functional mapping. To examine the brain networks underlying this phenomenon, we used the regions of interest (ROI) centered at the active electrode pairs. We modeled functional networks using two approaches: (1) rs-fMRI functional connectivity analysis, representing 81 healthy controls and (2) meta-analytic connectivity modeling (MACM), representing 8260 healthy subjects. We also determined the overlapping regions between these three subjects' rs-fMRI and MACM networks through a conjunction analysis. RESULTS:We identified that left PFC was associated with a large-scale functional network including frontal, temporal, and parietal regions, a network that has been associated with multiple cognitive functions including semantics, speech, attention, working memory, and explicit memory. CONCLUSIONS:We illustrate the neural networks involved in conceptual thought through a unique patient population and argue that PFC supports this function through activation of a widespread network.

翻译标题与摘要 下载文献
方向

复制标题
发送后即可在该邮箱或我的下载查看该文献
发送
该文献默认存储到我的下载

科研福利

临床科研之家订阅号

报名咨询

建议反馈
问题标题:
联系方式:
电子邮件:
您的需求: